PLU分解的优点是,能够将Ax=b的矩阵,转换成Ly=b, Ux = y

的形式。当我们改变系数矩阵b时,此时因为矩阵L和U均是固定

的,所以总能高效的求出矩阵的解。

// LU.cpp : Defines the entry point for the console application.
//
/************************************************
* Author: JohnsonDu
* From: Institute of Computing Technology
* University of Chinese Academy of Science
* Time: 2014-10-7
* Content: PLU decomposition
*************************************************/ #include "stdafx.h" #define MAXN 5005
#define eps 1e-9 // 精度
int n, m;
double mat[MAXN][MAXN]; // 输入矩阵
double matL[MAXN][MAXN]; // 矩阵L
double matU[MAXN][MAXN]; // 矩阵U
int matP[MAXN][MAXN]; // 矩阵P
int seq[MAXN]; // 记录行变换
//double vecB[MAXN];
//double vecY[MAXN];
//double vecX[MAXN];
//double matPb[MAXN]; void menu()
{
printf("----------------PLU Factorization---------------\n");
printf("| Please follow the instruction |\n");
printf("| to determine the LU decomposition |\n");
printf("| PA = LU |\n");
printf("------------------------------------------------\n\n"); } void initLMatrix()
{
memset(matU, 0, sizeof(matU));
memset(matL, 0, sizeof(matL));
memset(matP, 0, sizeof(matP));
} void padLMatrix()
{
for(int i = 0; i < n; i ++)
matL[i][i] = 1.0;
} inline double Abs(double x)
{
return x < 0 ? -x : x;
} void displayLU()
{
// 输出矩阵L
printf("\n----------------------\n");
printf("Matrix L follows: \n");
for(int i = 0; i < n; i ++)
{
for(int j = 0; j < (n < m ? n : m); j ++)
printf("%.3f ", matL[i][j]);
printf("\n");
} // 输出矩阵U
printf("\nMatrix U follows: \n");
for(int i = 0; i < (n < m ? n : m); i ++)
{
for(int j = 0; j < m; j ++)
printf("%.3f ", matU[i][j]);
printf("\n");
} // 输出矩阵P
printf("\nMatrix P follows: \n");
for(int i = 0; i < n; i ++)
{
for(int j = 0; j < n; j ++)
printf("%d ", matP[i][j]);
printf("\n");
}
printf("----------------------\n");
} /*
// 输出LU的过程及终于解
void displaySolution()
{
// 输出矩阵Pb
printf("\nMatrix Pb follows: \n");
for(int i = 0; i < n; i ++)
{
printf("%.3f\n", matPb[i]);
} // 输出向量y
printf("\nVector Y follows: \n");
for(int i = 0; i < n; i ++)
{
printf("%.3f\n", vecY[i]);
}
printf("\n"); // 输出解向量x
printf("\Vector X follows: \n");
for(int i = 0; i < n; i ++)
{
printf("%.3f\n", vecX[i]);
}
printf("\n");
}
*/ // 交换元素
inline void swap(int &a, int &b)
{
int t = a;
a = b;
b = t;
} // 高斯消元部分
void gauss()
{
int i;
int col;
int max_r; col = 0; //处理的当前列 // 从第一行開始进行消元
// k为处理的当前行
for(int k = 0; k < n && col < min(n, m); k ++, col ++)
{
// 寻找当前col列的绝对值最大值
max_r = k;
for(i = k + 1; i < n; i ++)
if(Abs(mat[i][col]) > Abs(mat[max_r][col]))
max_r = i; // 进行行交换
if(max_r != k)
{
for(int j = col; j < m; j ++)
swap(mat[k][j], mat[max_r][j]);
swap(seq[k], seq[max_r]);
for(int j = 0; j < n; j ++)
swap(matL[k][j], matL[max_r][j]);
} // 当前主元为零, 继续
if(Abs(mat[k][col]) < eps){
continue;
} // 消元部分,并获得L矩阵
for(int i = k + 1; i < n; i ++)
{ double t = mat[i][col] / mat[k][col];
matL[i][col] = t;
for(int j = col; j < m; j ++)
mat[i][j] -= t * mat[k][j];
} } // 为矩阵U进行赋值
for(int i = 0; i < n; i ++)
for(int j = 0; j < m; j ++)
matU[i][j] = mat[i][j]; // 生成矩阵P
for(int i = 0; i < n; i ++) matP[i][seq[i]] = 1.0; // 为矩阵L加入对角线元素
padLMatrix();
} /*
// 计算Pb的值
void calcPb()
{
for(int i = 0; i < n; i ++)
matPb[i] = 0.0;
//cout << "-----------" << endl;
for(int i = 0; i < n; i ++)
{
double t = 0.0;
for(int j = 0; j < n; j ++)
{
t = t + 1.0 * matP[i][j] * vecB[j];
//cout << t << endl;
//cout << matP[i][j] * vecB[j] << "---" << endl;
}
matPb[i] = t;
//cout << matPb[i] << endl;
}
} // 计算Ly = Pb, y向量
void calcY()
{
vecY[0] = matPb[0];
for(int i = 1; i < n; i ++)
{
double t = 0.0;
for(int j = 0; j < i; j ++)
t += vecY[j] * matL[i][j];
vecY[i] = matPb[i] - t;
}
} // 计算Ux = y, y向量
void calcX()
{
vecX[n-1] = vecY[n-1] / matU[n-1][n-1];
for(int i = n-2; i >= 0; i --)
{
double t = 0.0;
for(int j = n-1; j > i; j --)
t += vecX[j] * matU[i][j];
vecX[i] = (vecY[i] - t) / matU[i][i];
}
}
*/ int _tmain(int argc, _TCHAR* argv[])
{
menu();
while(true)
{
printf("Please input the matrix's dimension n & m: ");
// 输入矩阵的行n和列m
scanf("%d%d", &n, &m);
printf("Please input the matrix: \n"); // 输入矩阵
for(int i = 0; i < n; i ++)
{
for(int j = 0; j < m; j ++)
cin >> mat[i][j];
seq[i] = i;
} // 初始化为0
initLMatrix(); // 高斯消元
gauss(); // 输出P, L, U矩阵
displayLU();
system("pause");
system("cls");
menu(); /*
//此处是输入b,求取x, y 和 pb
while(true){
printf("please input vector b(whose length equals to %d): \n", n);
for(int i = 0; i < n; i ++) cin >> vecB[i];
calcPb();
calcY();
calcX();
displaySolution();
}
*/
} return 0;
}

当中stdafx.h的头文件:

// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
// #pragma once
#define _CRT_SECURE_NO_WARNINGS #include "targetver.h" #include <stdio.h>
#include <tchar.h>
#include <iostream>
using namespace std;

PLU Decomposition的更多相关文章

  1. Matrix QR Decomposition using OpenCV

    Matrix QR decomposition is very useful in least square fitting model. But there is no function avail ...

  2. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. URAL 1320 Graph Decomposition(并查集)

    1320. Graph Decomposition Time limit: 0.5 secondMemory limit: 64 MB There is a simple graph with an ...

  4. 奇异值分解(We Recommend a Singular Value Decomposition)

    奇异值分解(We Recommend a Singular Value Decomposition) 原文作者:David Austin原文链接: http://www.ams.org/samplin ...

  5. We Recommend a Singular Value Decomposition

    We Recommend a Singular Value Decomposition Introduction The topic of this article, the singular val ...

  6. 【转】奇异值分解(We Recommend a Singular Value Decomposition)

    文章转自:奇异值分解(We Recommend a Singular Value Decomposition) 文章写的浅显易懂,很有意思.但是没找到转载方式,所以复制了过来.一个是备忘,一个是分享给 ...

  7. 矩阵分解(rank decomposition)文章代码汇总

    矩阵分解(rank decomposition)文章代码汇总 矩阵分解(rank decomposition) 本文收集了现有矩阵分解的几乎所有算法和应用,原文链接:https://sites.goo ...

  8. 关于SVD(Singular Value Decomposition)的那些事儿

    SVD简介 SVD不仅是一个数学问题,在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层 ...

  9. [转]奇异值分解(We Recommend a Singular Value Decomposition)

    原文作者:David Austin原文链接: http://www.ams.org/samplings/feature-column/fcarc-svd译者:richardsun(孙振龙) 在这篇文章 ...

随机推荐

  1. HDU_1710_二叉树前序中序确定后序

    2018-3-6 按照王道机试书上的思路再做了一遍,先根据先序和中序建树,然后后序遍历. 静态分配数组用于建树,可以返回数组地址当作结点指针. #include<iostream> #in ...

  2. swift 与 NSObject

    以NSObject为基类,只是为了提供Objective-C API的使用入口: 经由@object修改的对象,是这些api的参量. NSObject是swift与oc特有机制沟通的桥梁. Subcl ...

  3. SQL条件语句(IF, CASE WHEN, IF NULL)

    1.IF   表达式:IF( expr1 , expr2 , expr3 )   expr1条件,条件为true,则值是expr2 ,false,值就是expr3 SELECT o.id,u.acco ...

  4. Discuz!代码

    我如何使用Discuz!代码   Discuz!代码 效果 [b]粗体文字 Abc[/b] 粗体文字 Abc [i]斜体文字 Abc[/i] 斜体文字 Abc [u]下划线文字 Abc[/u] 下划线 ...

  5. 判断Exe(DLL)和符号文件是否匹配---验证模块和符号文件是否匹配的工具和方法

    当我们进行程序调试时,有时调试器会直接告诉你符号文件不对,或则显示出的调用栈不对,当你怀疑符号文件不匹配时,如何确定呢? 如果是用windbg调试,请用 !chksym 模块名比如,匹配的时候  不匹 ...

  6. 03XML Schema Definition

    1. XML Schema Definition 1. XML Schema Definition XML Schema(XML Schema Definition,XSD)用于描述 XML 文档的结 ...

  7. 数据结构之线性顺序表ArrayList(Java实现)

    一.ListMe接口: import java.util.ArrayList; //实现线性表(顺序表和链表)的接口://提供add get isEmpty size 功能public interfa ...

  8. Redux的中间件Middleware不难,我信了^_^

    Redux的action和reducer已经足够复杂了,现在还需要理解Redux的中间件.为什么Redux的存在有何意义?为什么Redux的中间件有这么多层的函数返回?Redux的中间件究竟是如何工作 ...

  9. react-native 手势操作和 react-naviagation 组件的手势返回功能的冲突解决

    上篇我们说到过在react-native触摸及手势事件 那么我在项目中遇到的问题是在react-navigation中的子页面,希望保留在ios中的效果:从左侧往右侧滑动为退出该页面. 但是希望我在滑 ...

  10. Go:冒泡排序

    package main import "fmt" func BubbleSort(arr *[5]int) { fmt.Println("排序前:", *ar ...