生命周期监控,也就是死亡监控,是akka编程中常用的机制。比如我们有了某个actor的ActorRef之后,希望在该actor死亡之后收到响应的消息,此时我们就可以使用watch函数达到这一目的。

class WatchActor extends Actor {
val child = context.actorOf(Props.empty, "child")
context.watch(child) // <-- this is the only call needed for registration
var lastSender = context.system.deadLetters def receive = {
case "kill" ⇒
context.stop(child); lastSender = sender()
case Terminated(`child`) ⇒ lastSender ! "finished"
}
}

  我们从官网的一个例子入手,其实DeathWatch用起来还是非常方便的,就是调用context.watch,在对应的actor由于某种原因stop之后,就会收到Terminated消息,该消息只有一个参数,那就是stop的ActorRef。看起来简单,那具体是怎么实现的呢?

  /**
* Registers this actor as a Monitor for the provided ActorRef.
* This actor will receive a Terminated(subject) message when watched
* actor is terminated.
*
* `watch` is idempotent if it is not mixed with `watchWith`.
*
* It will fail with an [[IllegalStateException]] if the same subject was watched before using `watchWith`.
* To clear the termination message, unwatch first.
*
* *Warning*: This method is not thread-safe and must not be accessed from threads other
* than the ordinary actor message processing thread, such as [[java.util.concurrent.CompletionStage]] and [[scala.concurrent.Future]] callbacks.
*
* @return the provided ActorRef
*/
def watch(subject: ActorRef): ActorRef

  上面是ActorContex关于watch的官方注释,非常简单,就是watch一个actor,然后就会收到对应的Terminated消息,还说这个方法不是线程安全的。

  如果读者看过我之前的源码分析文章的话,一定知道context就是ActorContext的实例,而ActorContext是ActorCell的一个功能截面,那么watch函数的具体实现应该就是在ActorCell里面了。由于ActorCell实现的接口比较多,就不再具体分析如何找到watch实现在哪个类了,直接告诉答案:dungeon.DeathWatch。

private[akka] trait DeathWatch { this: ActorCell ⇒

  首先它是一个自我类型限定的trait,这种方式我之前吐槽过这里就不展开说了,来看看watch如何实现的。

override final def watch(subject: ActorRef): ActorRef = subject match {
case a: InternalActorRef ⇒
if (a != self) {
if (!watchingContains(a))
maintainAddressTerminatedSubscription(a) {
a.sendSystemMessage(Watch(a, self)) // ➡➡➡ NEVER SEND THE SAME SYSTEM MESSAGE OBJECT TO TWO ACTORS ⬅⬅⬅
updateWatching(a, None)
}
else
checkWatchingSame(a, None)
}
a
}

  从上面源码可以分析出几个简单的技术点:1、不能watch自身;2、如果已经被监控则调用checkWatchingSame;3、没有被监控过,就给被监控的actor发送Watch整个系统消息;4、没有监控过则更新监控信息。

/**
* This map holds a [[None]] for actors for which we send a [[Terminated]] notification on termination,
* ``Some(message)`` for actors for which we send a custom termination message.
*/
private var watching: Map[ActorRef, Option[Any]] = Map.empty
  //   when all actor references have uid, i.e. actorFor is removed
private def watchingContains(subject: ActorRef): Boolean =
watching.contains(subject) || (subject.path.uid != ActorCell.undefinedUid &&
watching.contains(new UndefinedUidActorRef(subject)))

  判断是否已经监控过,这个具体实现比较有意思,watching是一个Map,首先判断Map中是否需包含该ActorRef;如果不包含该ActorRef,就去判断有没有UID,有UID则创建一个UndefinedUidActorRef,再去watching中判断是否包含。难道不奇怪么?既然都不包含了,创建一个UndefinedUidActorRef就有可能包含了?谁说不是呢,哈哈。其实也不是。我们来看看ActorRef是如何定义equals的。

/**
* Equals takes path and the unique id of the actor cell into account.
*/
final override def equals(that: Any): Boolean = that match {
case other: ActorRef ⇒ path.uid == other.path.uid && path == other.path
case _ ⇒ false
}

  上面源码逻辑比较清晰,如果两个ActorRef相等,则一定是path相等,且对应的uid相等。ActorPath的判等就不再分析了,肯定是各个层次相同喽。

  那么有没有可能path相同,而uid不同呢?当然可能了,如果一个actor被stop之后,再用相同的actorOf参数创建呢?此时uid是不同的,而path是相同的。

private[akka] class UndefinedUidActorRef(ref: ActorRef) extends MinimalActorRef {
override val path = ref.path.withUid(ActorCell.undefinedUid)
override def provider = throw new UnsupportedOperationException("UndefinedUidActorRef does not provide")
}

  UndefinedUidActorRef就是与原ActorRef路径相同,而uid是ActorCell.undefinedUid的一个新的ActorRef。

  maintainAddressTerminatedSubscription,它会判断是不是本地actor,如果是本地actor则调用后面的block,对于远程actor会有一些特殊操作,这里不再分析。

  private def updateWatching(ref: InternalActorRef, newMessage: Option[Any]): Unit =
watching = watching.updated(ref, newMessage)

  updateWatching比较简单,就是把要watch的actorRef插入到watching这个Map中去。你要问我这个ActorRef在Map中对应的value是啥,我也是拒绝回答的,你可以看看watchWith的用法,这里不再分析。下面我们来分析一下被监控的Actor收到Watching之后是如何做响应的。

case Watch(watchee, watcher) ⇒ addWatcher(watchee, watcher)

  它命中了ActorCell.systemInvoke中的以上分支。

protected def addWatcher(watchee: ActorRef, watcher: ActorRef): Unit = {
val watcheeSelf = watchee == self
val watcherSelf = watcher == self if (watcheeSelf && !watcherSelf) {
if (!watchedBy.contains(watcher)) maintainAddressTerminatedSubscription(watcher) {
watchedBy += watcher
if (system.settings.DebugLifecycle) publish(Debug(self.path.toString, clazz(actor), s"now watched by $watcher"))
}
} else if (!watcheeSelf && watcherSelf) {
watch(watchee)
} else {
publish(Warning(self.path.toString, clazz(actor), "BUG: illegal Watch(%s,%s) for %s".format(watchee, watcher, self)))
}
}

  正常情况下,会命中第一个if的第一个分支的代码,其实也比较简答,就是去watchedBy里面查找是否保存过watcher,如果没有就把它加到watchedBy里面。

private var watchedBy: Set[ActorRef] = ActorCell.emptyActorRefSet

  watchedBy是一个set,也就是里面的ActorRef不重复。那如果这个actor被stop之后,啥时候通知对应的watchedBy呢?这个问题其实还是满复杂的。

  如果想知道什么时候通知了watchedBy,就需要知道stop的逻辑,那么ActorCell的stop是如何实现的呢?

// ➡➡➡ NEVER SEND THE SAME SYSTEM MESSAGE OBJECT TO TWO ACTORS ⬅⬅⬅
final def stop(): Unit = try dispatcher.systemDispatch(this, Terminate()) catch handleException

  stop在Dispatch这个trait里面实现,很简单,它又用当前dispatcher发送了一个Terminate消息给自己。

case Terminate() ⇒ terminate()

  收到Terminate消息后,调用了terminate方法。

protected def terminate() {
setReceiveTimeout(Duration.Undefined)
cancelReceiveTimeout // prevent Deadletter(Terminated) messages
unwatchWatchedActors(actor) // stop all children, which will turn childrenRefs into TerminatingChildrenContainer (if there are children)
children foreach stop if (systemImpl.aborting) {
// separate iteration because this is a very rare case that should not penalize normal operation
children foreach {
case ref: ActorRefScope if !ref.isLocal ⇒ self.sendSystemMessage(DeathWatchNotification(ref, true, false))
case _ ⇒
}
} val wasTerminating = isTerminating if (setChildrenTerminationReason(ChildrenContainer.Termination)) {
if (!wasTerminating) {
// do not process normal messages while waiting for all children to terminate
suspendNonRecursive()
// do not propagate failures during shutdown to the supervisor
setFailed(self)
if (system.settings.DebugLifecycle) publish(Debug(self.path.toString, clazz(actor), "stopping"))
}
} else {
setTerminated()
finishTerminate()
}
}

  terminate方法,逻辑清晰,它会通知子actor进行stop。那么子actor是如何stop的呢?

final def stop(actor: ActorRef): Unit = {
if (childrenRefs.getByRef(actor).isDefined) {
@tailrec def shallDie(ref: ActorRef): Boolean = {
val c = childrenRefs
swapChildrenRefs(c, c.shallDie(ref)) || shallDie(ref)
} if (actor match {
case r: RepointableRef ⇒ r.isStarted
case _ ⇒ true
}) shallDie(actor)
}
actor.asInstanceOf[InternalActorRef].stop()
}

  其实比较简单,就是判断当前actor是否存在,若存在且已经启动则调用swapChildrenRefs,最后调用这个子actor的stop()方法,进行递归stop。

override def shallDie(actor: ActorRef): ChildrenContainer = TerminatingChildrenContainer(c, Set(actor), UserRequest)

  shallDie其实就是创建一个TerminatingChildrenContainer,然后去替换childrenRefs。

@tailrec final protected def setChildrenTerminationReason(reason: ChildrenContainer.SuspendReason): Boolean = {
childrenRefs match {
case c: ChildrenContainer.TerminatingChildrenContainer ⇒
swapChildrenRefs(c, c.copy(reason = reason)) || setChildrenTerminationReason(reason)
case _ ⇒ false
}
}

  最后一个if语句会调用setChildrenTerminationReason,此时childrenRefs已经是TerminatingChildrenContainer类型的了,所以会返回true。

private def finishTerminate() {
val a = actor
/* The following order is crucial for things to work properly. Only change this if you're very confident and lucky.
*
* Please note that if a parent is also a watcher then ChildTerminated and Terminated must be processed in this
* specific order.
*/
try if (a ne null) a.aroundPostStop()
catch handleNonFatalOrInterruptedException { e ⇒ publish(Error(e, self.path.toString, clazz(a), e.getMessage)) }
finally try dispatcher.detach(this)
finally try parent.sendSystemMessage(DeathWatchNotification(self, existenceConfirmed = true, addressTerminated = false))
finally try stopFunctionRefs()
finally try tellWatchersWeDied()
finally try unwatchWatchedActors(a) // stay here as we expect an emergency stop from handleInvokeFailure
finally {
if (system.settings.DebugLifecycle)
publish(Debug(self.path.toString, clazz(a), "stopped")) clearActorFields(a, recreate = false)
clearActorCellFields(this)
actor = null
}
}

  所以最终会调用finishTerminate,在finishTerminate代码中会去调用tellWatchersWeDied

protected def tellWatchersWeDied(): Unit =
if (!watchedBy.isEmpty) {
try {
// Don't need to send to parent parent since it receives a DWN by default
def sendTerminated(ifLocal: Boolean)(watcher: ActorRef): Unit =
if (watcher.asInstanceOf[ActorRefScope].isLocal == ifLocal && watcher != parent)
watcher.asInstanceOf[InternalActorRef].sendSystemMessage(DeathWatchNotification(self, existenceConfirmed = true, addressTerminated = false)) /*
* It is important to notify the remote watchers first, otherwise RemoteDaemon might shut down, causing
* the remoting to shut down as well. At this point Terminated messages to remote watchers are no longer
* deliverable.
*
* The problematic case is:
* 1. Terminated is sent to RemoteDaemon
* 1a. RemoteDaemon is fast enough to notify the terminator actor in RemoteActorRefProvider
* 1b. The terminator is fast enough to enqueue the shutdown command in the remoting
* 2. Only at this point is the Terminated (to be sent remotely) enqueued in the mailbox of remoting
*
* If the remote watchers are notified first, then the mailbox of the Remoting will guarantee the correct order.
*/
watchedBy foreach sendTerminated(ifLocal = false)
watchedBy foreach sendTerminated(ifLocal = true)
} finally {
maintainAddressTerminatedSubscription() {
watchedBy = ActorCell.emptyActorRefSet
}
}
}

  tellWatchersWeDied做了什么呢?其实就是给watchedBy对应的actorRef发送DeathWatchNotification消息。请注意DeathWatchNotification的第一个参数是self,就是要stop的actor。

case DeathWatchNotification(a, ec, at) ⇒ watchedActorTerminated(a, ec, at)

  而watcher收到DeathWatchNotification如何响应呢?

/**
* When this actor is watching the subject of [[akka.actor.Terminated]] message
* it will be propagated to user's receive.
*/
protected def watchedActorTerminated(actor: ActorRef, existenceConfirmed: Boolean, addressTerminated: Boolean): Unit = {
watchingGet(actor) match {
case None ⇒ // We're apparently no longer watching this actor.
case Some(optionalMessage) ⇒
maintainAddressTerminatedSubscription(actor) {
watching = removeFromMap(actor, watching)
}
if (!isTerminating) {
self.tell(optionalMessage.getOrElse(Terminated(actor)(existenceConfirmed, addressTerminated)), actor)
terminatedQueuedFor(actor)
}
}
if (childrenRefs.getByRef(actor).isDefined) handleChildTerminated(actor)
}

  很明显watchedActorTerminated在当前actor处于正常状态,且已经监控了对应的actor时,会给自己发送一个Terminated(actor),或者Terminated(actor,msg)的消息。这样监控者就收到了被监控actor的Terminated消息了。

  其实吧,抛开子actor状态的维护以及其他复杂的操作,简单来说就是,监控者保存自己监控了哪些actor,被监控者保存了自己被哪些actor监控了,在被监控者stop的最后一刻发送Terminated消息给监控者就好了。当然了,这还涉及到remote模式,此时就比较复杂,后面再分析。

Akka源码分析-local-DeathWatch的更多相关文章

  1. Akka源码分析-Cluster-Metrics

    一个应用软件维护的后期一定是要做监控,akka也不例外,它提供了集群模式下的度量扩展插件. 其实如果读者读过前面的系列文章的话,应该是能够自己写一个这样的监控工具的.简单来说就是创建一个actor,它 ...

  2. Akka源码分析-Cluster-Distributed Publish Subscribe in Cluster

    在ClusterClient源码分析中,我们知道,他是依托于“Distributed Publish Subscribe in Cluster”来实现消息的转发的,那本文就来分析一下Pub/Sub是如 ...

  3. Akka源码分析-Persistence

    在学习akka过程中,我们了解了它的监督机制,会发现actor非常可靠,可以自动的恢复.但akka框架只会简单的创建新的actor,然后调用对应的生命周期函数,如果actor有状态需要回复,我们需要h ...

  4. Akka源码分析-Cluster-ActorSystem

    前面几篇博客,我们依次介绍了local和remote的一些内容,其实再分析cluster就会简单很多,后面关于cluster的源码分析,能够省略的地方,就不再贴源码而是一句话带过了,如果有不理解的地方 ...

  5. Akka源码分析-Akka Typed

    对不起,akka typed 我是不准备进行源码分析的,首先这个库的API还没有release,所以会may change,也就意味着其概念和设计包括API都会修改,基本就没有再深入分析源码的意义了. ...

  6. Akka源码分析-Akka-Streams-概念入门

    今天我们来讲解akka-streams,这应该算akka框架下实现的一个很高级的工具.之前在学习akka streams的时候,我是觉得云里雾里的,感觉非常复杂,而且又难学,不过随着对akka源码的深 ...

  7. Akka源码分析-Cluster-Singleton

    akka Cluster基本实现原理已经分析过,其实它就是在remote基础上添加了gossip协议,同步各个节点信息,使集群内各节点能够识别.在Cluster中可能会有一个特殊的节点,叫做单例节点. ...

  8. Akka源码分析-Akka-Streams-Materializer(1)

    本博客逐步分析Akka Streams的源码,当然必须循序渐进,且估计会分很多篇,毕竟Akka Streams还是比较复杂的. implicit val system = ActorSystem(&q ...

  9. Akka源码分析-Cluster-Sharding

    个人觉得akka提供的cluster工具中,sharding是最吸引人的.当我们需要把actor分布在不同的节点上时,Cluster sharding非常有用.我们可以使用actor的逻辑标识符与ac ...

随机推荐

  1. CF 429B B.Working out (四角dp)

    题意: 两个人一个从左上角一个从左下角分别开始走分别走向右下角和右上角,(矩阵每个格子有数)问到达终点后可以得到的最大数是多少,并且条件是他们两个相遇的时候那个点的数不能算 思路: 首先这道题如果暴力 ...

  2. 定时任务-----Springboot中使用Scheduled做定时任务----http://www.cnblogs.com/lirenqing/p/6596557.html

    Springboot中使用Scheduled做定时任务---http://www.cnblogs.com/lirenqing/p/6596557.html 已经验证的方案: pom文件加入依赖 < ...

  3. HDU 1220 简单数学题

    题目大意是 在魔方上找到有多少对小立方块它们之间连接的点不超过两个 因为任意两个立方块之间相连的点就只有0,1,2,4 这样4种情况 那么我们只需要考虑总共的组成立方块对数 sum = C(2 , n ...

  4. [SDOI2011]打地鼠

    题目描述 打地鼠是这样的一个游戏:地面上有一些地鼠洞,地鼠们会不时从洞里探出头来很短时间后又缩回洞中.玩家的目标是在地鼠伸出头时,用锤子砸其头部,砸到的地鼠越多分数也就越高. 游戏中的锤子每次只能打一 ...

  5. POJ2774:Long Long Message

    问两个串的最长公共子串,n<=100000. SAM可以直接搞当然SA哈希都可以..类似于KMP的做法,如果沿parent边走要顺势修改匹配位置. #include<stdio.h> ...

  6. 深刻理解Python中的元类(metaclass)--代码实践

    根据http://blog.jobbole.com/21351/所作的代码实践. 这篇讲得不错,但以我现在的水平,用到的机会是很少的啦... #coding=utf-8 class ObjectCre ...

  7. codevs——1979 第K个数

    1979 第K个数  时间限制: 1 s  空间限制: 1000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 给定一个长度为N(0<n<=10 ...

  8. VS2017 +NetCore2.2.0+WebApi项目整合SwaggerUI 以及遇到的坑

    1.新建一个WebApi项目,这里不说了. 2.打开项目nuget管理控制台,在 https://www.nuget.org/ 搜索swagger的包:Swashbuckle.AspNetCore , ...

  9. 为什么 Android Studio 工程文件夹占用空间这么大?

    为什么 Android Studio 工程文件夹占用空间这么大? 学习了: https://www.cnblogs.com/chengyujia/p/5791002.html

  10. ubuntu 图形界面搜索软件Catfish (鲶鱼)

    Catfish(鲶鱼)是一款Linux桌面图形软件,可以在桌面图形化的搜索文件. 在Ubuntu下可以用 : sudo apt-get install catfish 安装