spark 机器学习 朴素贝叶斯 原理(一)
朴素贝叶斯算法仍然是流行的挖掘算法之一,该算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。但由于该算法以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提,就会导致算法精度在某种程度上受影响
朴素贝叶斯的实现流程
1.理解先验概率和后验概率的区别?
a.先验概率:是指根据以往经验和分析得到的概率。简单来说,就是经验之谈,打趣来说——不听老人言,吃亏在眼前。
b.后验概率:是指通过调查或其它方式获取新的附加信息,去修正发生的概率。也就是参考的信息量更多、更全。
2.它们之间的转换,推导出贝叶斯公式
3.概率的数学公式形式为
注:公式中 P(AB) 为事件 AB 的联合概率,P(A|B) 为条件概率,表示在 B 条件下 A 的概率,P(B) 为事件 B 的概率。
推导过程:
4.贝叶斯公式
扩展:
5.如何理解朴素这两个字
朴素贝叶斯基于一个简单的假定:给定特征向量之间相互条件独立。
考虑到 P(B1B2...Bn) 对于所有类别都是一样的。而对于朴素贝叶斯的分类场景并需要准确得到某种类别的可能性,更多重点在于比较分类结果偏向那种类别的可能性更大。
6.例子
某个医院早上收了六个门诊病人,如下表截图
现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?
没有感冒人群特征满足:打喷嚏,建筑工人
套用朴素贝叶斯算法
假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了
因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。
spark 机器学习 朴素贝叶斯 原理(一)的更多相关文章
- spark 机器学习 朴素贝叶斯 实现(二)
已知10月份10-22日网球场地,会员打球情况通过朴素贝叶斯算法,预测23,24号是否适合打网球.结果,日期,天气 温度 风速结果(0否,1是)天气(0晴天,1阴天,2下雨)温度(0热,1舒适,2冷) ...
- Python之机器学习-朴素贝叶斯(垃圾邮件分类)
目录 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 模块导入 文本预处理 遍历邮件 训练模型 测试模型 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 邮箱训练集可以加我微信:nickchen121 ...
- 机器学习---朴素贝叶斯与逻辑回归的区别(Machine Learning Naive Bayes Logistic Regression Difference)
朴素贝叶斯与逻辑回归的区别: 朴素贝叶斯 逻辑回归 生成模型(Generative model) 判别模型(Discriminative model) 对特征x和目标y的联合分布P(x,y)建模,使用 ...
- 机器学习朴素贝叶斯 SVC对新闻文本进行分类
朴素贝叶斯分类器模型(Naive Bayles) Model basic introduction: 朴素贝叶斯分类器是通过数学家贝叶斯的贝叶斯理论构造的,下面先简单介绍贝叶斯的几个公式: 先验概率: ...
- 朴素贝叶斯原理、实例与Python实现
初步理解一下:对于一组输入,根据这个输入,输出有多种可能性,需要计算每一种输出的可能性,以可能性最大的那个输出作为这个输入对应的输出. 那么,如何来解决这个问题呢? 贝叶斯给出了另一个思路.根据历史记 ...
- 【Spark机器学习速成宝典】模型篇04朴素贝叶斯【Naive Bayes】(Python版)
目录 朴素贝叶斯原理 朴素贝叶斯代码(Spark Python) 朴素贝叶斯原理 详见博文:http://www.cnblogs.com/itmorn/p/7905975.html 返回目录 朴素贝叶 ...
- 【机器学习实战】第4章 朴素贝叶斯(Naive Bayes)
第4章 基于概率论的分类方法:朴素贝叶斯 朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础——贝叶斯定理.最后,我们 ...
- 深入理解朴素贝叶斯(Naive Bayes)
https://blog.csdn.net/li8zi8fa/article/details/76176597 朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.朴素贝叶斯原理简 ...
- [机器学习&数据挖掘]朴素贝叶斯数学原理
1.准备: (1)先验概率:根据以往经验和分析得到的概率,也就是通常的概率,在全概率公式中表现是“由因求果”的果 (2)后验概率:指在得到“结果”的信息后重新修正的概率,通常为条件概率(但条件概率不全 ...
随机推荐
- Raw-OS源代码分析之消息系统-Queue_Buffer
分析的内核版本号截止到2014-04-15,基于1.05正式版.blogs会及时跟进最新版本号的内核开发进度,若源代码凝视出现"???"字样,则是未深究理解部分. Raw-OS官方 ...
- C# Backgroundworker(后台线程)的使用
namespace BackgroundWorkderPauseSample { public partial class MainForm : Form { BackgroundWorker wor ...
- 史上最全的CSS hack方式一览 jQuery 图片轮播的代码分离 JQuery中的动画 C#中Trim()、TrimStart()、TrimEnd()的用法 marquee 标签的使用详情 js鼠标事件 js添加遮罩层 页面上通过地址栏传值时出现乱码的两种解决方法 ref和out的区别在c#中 总结
史上最全的CSS hack方式一览 2013年09月28日 15:57:08 阅读数:175473 做前端多年,虽然不是经常需要hack,但是我们经常会遇到各浏览器表现不一致的情况.基于此,某些情况我 ...
- 【数据结构】二叉树(c++)
头文件: #include <iostream> using namespace std; template<class Type> class Bintree; //结点类 ...
- Posix消息队列相关函数
Posix消息队列(message queue) IPC函数中常用的参数取值: 打开或创建POSIX IPC对象所用的各种oflag常值o_RDONLY 只读O_WRONLY 只写O_RDWD ...
- strsep strpbrk
#include <stdio.h> #include <string.h> int main(void) { char s[] = "aa,bb,cc.11,22, ...
- 尝试使用UISearchDisplayController及对苹果对控件封装习惯的理解
本文转载至 http://blog.sina.com.cn/s/blog_74e9d98d01019vji.html 在之前做过的应用中,很多都有“搜索”这个功能,大部分情况下我都是只采用UISe ...
- java中方法中声明三个点“...”作用
public class Test { public static void main(String[] args) { String str[] = {"s"," ...
- 编译spark源码 Maven 、SBT 2种方式编译
由于实际环境较为复杂,从Spark官方下载二进制安装包可能不具有相关功能或不支持指定的软件版本,这就需要我们根据实际情况编译Spark源代码,生成所需要的部署包. Spark可以通过Maven和SBT ...
- 文件批量转换成UTf-8
yum install -y enca 在文件夹根目录下面创建文件:iconv_shell.sh 里面填写下面的内容: #!/bin/bash for file in `find ./ -name ' ...