参考:https://www.cnblogs.com/2016gdgzoi509/p/8999460.html

列出生成函数方程,g(x)是价值x的个数

\[f(x)=g(x)*f^2(x)+1
\]

+1是f[0]=1

根据公式解出

\[f(x)=\frac{1+(-)\sqrt{1-4*g(x)}}{2*g(x)}
\]

舍去+的答案,分式上下同乘\( 1-\sqrt{1-4*g(x)} \)

\[f(x)=\frac{2}{1+\sqrt{1-4*g(x)}}
\]

然后套多项式开跟和求逆的板子即可

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=500005,mod=998244353,inv2=499122177;
int n,m,bt,lm,re[N],a[N],b[N],c[N],t[N];//,aa[N],bb[N],cc[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
void dft(int a[],int f,int lm)
{
// for(int i=0;i<lm;i++)
// cerr<<a[i]<<" ";cerr<<endl;
// bt=log2(lm);//cerr<<" "<<lm<<" "<<bt<<endl;
// for(int i=0;i<lm;i++)
// re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
for(int i=0;i<lm;i++)
if(i<re[i])
swap(a[i],a[re[i]]);
for(int i=1;i<lm;i<<=1)
{
int wi=ksm(3,(mod-1)/(i*2));
if(f==-1)
wi=ksm(wi,mod-2);
for(int k=0;k<lm;k+=(i<<1))
{
int w=1,x,y;
for(int j=0;j<i;j++)
{
x=a[j+k],y=1ll*w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod,a[i+j+k]=(x-y+mod)%mod;
w=1ll*w*wi%mod;
}
}
}
if(f==-1)
{
int ni=ksm(lm,mod-2);
for(int i=0;i<lm;i++)
a[i]=1ll*a[i]*ni%mod;
}
// for(int i=0;i<lm;i++)
// cerr<<a[i]<<" ";cerr<<endl<<endl;;
}
void qiuni(int len)
{
if(len==1)
{
c[0]=ksm(b[0],mod-2);
return;
}
qiuni(len>>1);
memcpy(t,b,sizeof(int)*len);
memset(t+len,0,sizeof(int)*len);
int bt=-1,lm=1;
while(lm<len<<1)
lm<<=1,bt++;
for(int i=0;i<lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<bt);
dft(t,1,lm);
dft(c,1,lm);
for(int i=0;i<lm;i++)
c[i]=1ll*c[i]*(2-1ll*t[i]*c[i]%mod+mod)%mod;
dft(c,-1,lm);
memset(c+len,0,sizeof(int)*len);
}
void kaigen(int len)
{
if(len==1)
{
b[0]=1;
return;
}
kaigen(len>>1);
memset(c,0,sizeof(int)*len);
qiuni(len);
memcpy(t,a,sizeof(int)*len);
memset(t+len,0,sizeof(int)*len);
int bt=-1,lm=1;
while(lm<len<<1)
lm<<=1,bt++;
for(int i=0;i<lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<bt);
dft(t,1,lm);
dft(b,1,lm);
dft(c,1,lm);
for(int i=0;i<len*2;i++)
b[i]=1ll*(1ll*b[i]*b[i]+t[i])%mod*c[i]%mod*inv2%mod;
dft(b,-1,lm);
memset(b+len,0,sizeof(int)*len);
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
{
int x=read();
a[x]++;
}
for(int i=1;i<=m;i++)
a[i]=(-a[i]*4+mod)%mod;
for(bt=1;(1<<bt)<=m;bt++);
lm=(1<<bt);
for(int i=0;i<lm;i++)
if(a[i])
a[i]=mod-4;
a[0]++;
kaigen(lm);
// for(int i=0;i<n;i++)
// cerr<<a[i]<<" "<<b[i]<<" "<<c[i]<<endl;
b[0]=(b[0]+1)%mod;
memset(c,0,sizeof(c));
qiuni(lm);
for(int i=1;i<=m;i++)
printf("%d\n",c[i]*2%mod);
return 0;
}

bzoj 3625: [Codeforces Round #250]小朋友和二叉树【NTT+多项式开根求逆】的更多相关文章

  1. BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根

    生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. ...

  2. BZOJ 3625: [Codeforces Round #250]小朋友和二叉树

    3625: [Codeforces Round #250]小朋友和二叉树 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 304  Solved: 13 ...

  3. [BZOJ3625][Codeforces Round #250]小朋友和二叉树 多项式开根+求逆

    https://www.lydsy.com/JudgeOnline/problem.php?id=3625 愉快地列式子.设\(F[i]\)表示权值为\(i\) 的子树的方案数,\(A[i]\)为\( ...

  4. BZOJ3625 [Codeforces Round #250]小朋友和二叉树(生成函数+多项式开根)

    设f(n)为权值为n的神犇二叉树个数.考虑如何递推求这个东西. 套路地枚举根节点的左右子树.则f(n)=Σf(i)f(n-i-cj),cj即根的权值.卷积的形式,cj也可以通过卷上一个多项式枚举.可以 ...

  5. [BZOJ3625][CF438E]小朋友和二叉树 (多项式开根,求逆)

    题面 题解 设多项式的第a项为权值和为a的二叉树个数,多项式的第a项表示是否为真,即 则,所以F是三个多项式的卷积,其中包括自己: ,1是F的常数项,即. 我们发现这是一个一元二次方程,可以求出,因为 ...

  6. BZOJ3625: [Codeforces Round #250]小朋友和二叉树

    Description 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树.考虑一个含有n个互异正整数的序列c[1],c[2],...,c[n].如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合{ ...

  7. [Codeforces Round #250]小朋友和二叉树

    题目描述: bzoj luogu 题解: 生成函数ntt. 显然这种二叉树应该暴力薅掉树根然后分裂成两棵子树. 所以$f(x)= \sum_{i \in c} \sum _{j=0}^{x-c} f( ...

  8. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

  9. Codeforces Round #250 (Div. 1)E. The Child and Binary Tree

    题意:有一个集合,求有多少形态不同的二叉树满足每个点的权值都属于这个集合并且总点权等于i 题解:先用生成函数搞出来\(f(x)=f(x)^2*c(x)+1\) 然后转化一下变成\(f(x)=\frac ...

随机推荐

  1. 【Java编程】建立一个简单的JDBC连接-Drivers, Connection, Statement and PreparedStatement

    本blog提供了一个简单的通过JDBC驱动建立JDBC连接例程.并分别通过Statement和PreparedStatement实现对数据库的查询. 在下一篇blog中将重点比較Statement与P ...

  2. ZOJ ACM 1314(JAVA)

    昨天做了几个题目.过于简单,就不在博客里面写了. 1314这道题也比較简单,写出来是由于我认为在这里有一个小技巧,对于时间复杂度和空间复杂度都比較节省. 这个题目类似哈希表的求解.可是更简单.刚拿到题 ...

  3. 嵌入式程序员应知道的0x10个C语言Tips

    [1].[代码] [C/C++]代码 跳至 [1] ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ...

  4. 新生入学V3.0颗粒归仓

    新生入学系统V3.0接近尾声.每次做项目都有不一样的收获.V1.0,V2.0主要是熟悉了整个项目流程是怎样进行的,可行性分析--需求分析(原型图Axure)--实体设计(PD)--类图时序图(EA)- ...

  5. ubuntu 的权限和目录

    / : 根目录 /bin 和 /sbin中放置的是可执行文件   /etc 里面放的是配置文件    /boot 引导 /mnt  是挂载目录 /home   主目录 /dev  设备 /usr li ...

  6. windows 怎么验证域名是否开启了 https

    由于 ping 是针对 IP 层的,只能检查当前系统网络与网络中某个IP,某个域名是否连通. 当我们需要验证域名是否开启了 https时,用如下方法: 1. 下载tcping.exe,放到本机C盘根目 ...

  7. Intel processor brand names-Xeon,Core,Pentium,Celeron----Quark

    http://en.wikipedia.org/wiki/Intel_Quark Intel Quark From Wikipedia, the free encyclopedia     Intel ...

  8. C++类中使用new及delete小例子

    //默认复制构造函数的不足//尽管有默认的复制构造函数来解决一般对象与对象之间的初始化问题, 但是在有些情况下我们必须手动显式的去定义复制构造函数, 例如: #include <iostream ...

  9. wxpython中控件对键盘输入无响应的可能原因

    问题描述: 开发环境:Win7 32bit + Python2.7.6 + WxPython 3.0.1-b20140707 开发某初级CAD软件中,需要实现点击TreeCtrl控件的相应选择,实现G ...

  10. Python 003- 小知识汇总(更新中)

    #查询key是否存在,可以在使用未知的字典的时候使用 #-*- coding:utf-8 -*- D={'a':1,'c':3,'b':2} for key in sorted(D): print(k ...