上一节我们将导数定义为切线的斜率,这是一种几何解释。我们求出了1/x的斜率为 -1/x2 求出了 f(x) = xn 的斜率是 f(x) = n*xn-1  这些几何的推导都是根据y-y = k * ( x - x0 ).得来的。

这一节我们重新审视 何是导数?我们将导数定义为变化率。

当做图  y = f(x)的时候我们可以从变化率的角度而言记录x以及y的变化。也就是记录了平均相对变化率 => Δx/Δy,这是一种平均变化。 通常我们可以将x当成时间,这时候y就可以当成另一种变化量。这时候其极限(Δx -> 0)就可以表示为 dy/dx。因此前面的是平均变化率,这个是瞬时变化率。

这里我们举两个栗子(关于变化率的栗子):

        

先说第二个,这个比较简单,主要用了高中物理 h= g*t2 + v*t.  假设一个人站在教学楼上面向一片草地上扔一个南瓜(Pumpkin drop 南瓜坠游戏),楼的高度为80m , 由此可得高度随时间的变化公式为 h = 80 - 5*t2 所以当 t = 0 则 h = 80。当t = 4 则 h =0 所以Ave speed : Δh/Δt = (0-8)/(4-0) 这个是平均速度 下面我们讲一下瞬时速度。 dh/dt = 我们可以根据上一节我们得到的公式 (xn )= n*xn-1  来对这个公式进行求导。dh/dt = 0 - 10*t . 所以当t = 0 则 h“ = 0,当t = 4 则h” =40 。 所以当落地的时候速度为40。这是平均速度的二倍。

下面说第三个例题。

T = temperature    dt/dx = temperature-gradient 温度梯度

下面说第四个 sensitivity of measurement 测量灵敏度

上述就是导数的介绍,导数的介绍到这里也就完了。


下面开始对导数进行详细的介绍。

简单的极限如下: 十分简单,这个是简单极限。

左极限和右极限。

(图中和y轴相交的两点需要用一个园扩起来,表示不包含这一点。)对这一题进行求左右极限得 :  求极限不需要知道 x = 0的值 。

下面我们定义什么是连续。

如果X0需要满足连续条件的化,则他需要满足一下几个条件。

1:极限必须存在。在上例中就是当 x = 0 的时候 f(x)必须由确定的值。

2:左右极限必须相等,上一个例题就不符合这一点。

下面看一些不连续的函数。

 间断跳跃

    1:左右极限均存在但是不相等。就是我们上面的那个栗子。

 可去间断

    1:左右极限存在且相等

一条直线的中间有一个洞。丢的那一点可能在那个洞的正上,下方。当我们重新定义这一点的时候,直线可以连续,所以这就是可去间断点。

开始举栗子:

h(x) =sin ( x ) / x 的图形如下。 通过图形可得   当 x = 0 的时候 该点是没有对应的值得 。 这两个都是 “ 可去间断点 ” 。

无穷间断

y = 1/x 的图形 这里要分左右连续。我们可以得到他的左右极限为: 如果我们部分左右极限直接让他为正无穷或者负无穷的化,这是十分扯淡的盲人摸象。

其他(丑陋)间断。

  y = sin(1/x)他没有极限属于其他间断。

定理:可导必连续,若f在x处可导,那么该图像在x处必然连续。

对其进行证明假设f(x)在x0处可导那么问其是否连续。

      f(x0) = (f(x)-f(x0))/(x-x0)

极限和连续 limits + Continue的更多相关文章

  1. 【Todo】【转载】深度学习&神经网络 科普及八卦 学习笔记 & GPU & SIMD

    上一篇文章提到了数据挖掘.机器学习.深度学习的区别:http://www.cnblogs.com/charlesblc/p/6159355.html 深度学习具体的内容可以看这里: 参考了这篇文章:h ...

  2. CET4词汇

    abandon vt.丢弃:放弃,抛弃 ability n.能力:能耐,本领 abnormal a.不正常的:变态的 aboard ad.在船(车)上:上船 abroad ad.(在)国外:到处 ab ...

  3. MIT牛人解说数学体系

    https://www.douban.com/group/topic/11115261/ 在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进. 为什 ...

  4. 【zz】MIT牛人解说数学体系

    作者:林达华 一.为什么要深入数学的世界 作为计算机的学生,我(原作者)没有任何企图要成为一个数学家.我学习数学的目 的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些. ...

  5. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

  6. GDB调试笔记

    参考资料:GDB调试精粹及使用实例 # 调试实例 #include <iostream> #include <cstring> using namespace std; ][] ...

  7. MIT牛人解说数学体系(转载)

    原文网址:http://www.guokr.com/post/442622/ 在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进. 为什么要深入数学 ...

  8. gcc编译, gdb调试, makefile写法

    //test.c: #include <stdio.h> int main(void) { printf("hello world!"); return 0; } == ...

  9. Vim与GCC和gdb完美组合

    一.vim vim修改一下配置文件后,如果你稍微会点vim的命令使用,那可比一般的编辑器好用啊,如果一点不会vim的命令使用,就跟一般编辑器一样使用. 打开etc/vim/vimrc文件 这里的引号是 ...

随机推荐

  1. 【转载】一些VS2013的使用技巧

    1. Peek View 可以在不新建TAB的情况下快速查看.编辑一个函数的代码. 用法:在光标移至某个函数下,按下alt+F12. 然后在Peek窗口里可以继续按alt+F12.然后按ctrl+al ...

  2. php中的register_shutdown_function和fastcgi_finish_request

    在php中又两个方法都是在请求快结束的时候执行.方法名分别是 register_shutdown_function和fastcgi_finish_request.虽然执行的时机差不多,但是功能和应用场 ...

  3. sqlite学习笔记10:C语言中使用sqlite之查询和更新数据

    前面说到的 sqlite_exec() 中的第三个參数, SQLite 将为 sql 參数内运行的每一个 SELECT 语句中处理的每一个记录调用这个回调函数. 本节加入了两个函数.selectFro ...

  4. LeetCode232 Implement Queue using Stacks Java 题解

    题目: Implement the following operations of a queue using stacks. push(x) -- Push element x to the bac ...

  5. openstack 中国联盟公开课參会总结

    主流趋势 1. openstack defcore 互操作性认证.打通不同的openstack 厂商之间的连接 2. 首批OpenStack管理员认证(COA)将于2016年进行 3. 混合云应用广泛 ...

  6. POJ--2284--That Nice Euler Circuit【平面图欧拉公式】

    链接:id=2284">http://poj.org/problem?id=2284 题意:一个自己主动绘图的机器在纸上(无限大)绘图,笔尖从不离开纸,有n个指令,每一个指令是一个坐标 ...

  7. 项目Beta冲刺(团队4/7)

    项目Beta冲刺(团队4/7) 团队名称: 云打印 作业要求: 项目Beta冲刺(团队) 作业目标: 完成项目Beta版本 团队队员 队员学号 队员姓名 个人博客地址 备注 221600412 陈宇 ...

  8. Windows 8实用窍门系列:20.Windows 8中的GridView使用(二)和DataTemplateSelector

    在本文中所讲述内容的实例仍然沿用于上篇文章,有什么疑惑可以参考上篇文章. 一 GroupStyle 在GridView控件中我们可以对数据进行分组显示,通过对GridView的GroupStyle进行 ...

  9. MVC Hidden用法

    @Html.Hidden("DataSeriID",ViewBag.DataSeriID as string) 第一个参数相当于生成的ID值,后面的参数是String类型的数据,V ...

  10. python day- 16 面向对象

    1.类的相关知识 类:是指具有相同属性和技能的一类事物. 比如:人类 ,植物类,动物类,狗类. 对象:是类中的某一个实例,是类的具体表现. 比如:具体到某个人,某一个植物,某一条狗. class 是p ...