Minimum Path Sum(DFS,DP)
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
解法1:DFS,超时。
思路:其实类似对二叉树的DFS,只是终止条件不同,递归的终止条件就是到达最后一列,或者到达最后一行,因为最后一列的数字只有一个选择就是往下走,最后一行类似只有往右走。
当走到grid[rowMax-1][colMax-1],也就是一次路径完成,并和minSum做较,取较小的。
超时输入:
int my_grid[rowMax][colMax]={
{7,1,3,5,8,9,9,2,1,9,0,8,3,1,6,6,9,5},
{9,5,9,4,0,4,8,8,9,5,7,3,6,6,6,9,1,6},
{8,2,9,1,3,1,9,7,2,5,3,1,2,4,8,2,8,8},
{6,7,9,8,4,8,3,0,4,0,9,6,6,0,0,5,1,4},
{7,1,3,1,8,8,3,1,2,1,5,0,2,1,9,1,1,4},
{9,5,4,3,5,6,1,3,6,4,9,7,0,8,0,3,9,9},
{1,4,2,5,8,7,7,0,0,7,1,2,1,2,7,7,7,4},
{3,9,7,9,5,8,9,5,6,9,8,8,0,1,4,2,8,2},
{1,5,2,2,2,5,6,3,9,3,1,7,9,6,8,6,8,3},
{5,7,8,3,8,8,3,9,9,8,1,9,2,5,4,7,7,7},
{2,3,2,4,8,5,1,7,2,9,5,2,4,2,9,2,8,7},
{0,1,6,1,1,0,0,6,5,4,3,4,3,7,9,6,1,9}};
代码:
class Solution {
private:
int minSum;
vector<vector<int>> my_grid;
int rowMax;
int colMax;
public:
void tra(int i,int j,int sum){
sum+=my_grid[i][j];
if(j==colMax-&&i<rowMax)
{
++i;
for (i;i<rowMax;++i)
{
sum+=my_grid[i][j];
}
if(i==rowMax&&sum<minSum){
minSum=sum;
}
return;
}
if(i==rowMax-&&j<colMax)
{
++j;
for (j;j<colMax;++j)
{
sum+=my_grid[i][j];
}
if(j==colMax&&sum<minSum){
minSum=sum;
}
return;
}
tra(i,j+,sum);
tra(i+,j,sum);
}
int minPathSum(vector<vector<int>>& grid) {
minSum=(~(unsigned int))>>;
my_grid=grid;
rowMax=grid.size();
colMax=grid[].size();
tra(,,);
return minSum;
}
};
解法2:DP(还是不熟练,不太熟练递推dp和递归dp的区别,参考文章)
dp[100][100];该dp数组记录的是每个位置上的最优解,即到达这一点的路径最小值。假设我们要求以grid[i][j]为末尾的最小路径值,我们只需要求出它头上一个格子,和左边格子为末尾的最小路径值之中的最小值,也即min{dp[i-1][j],dp[i][j-1]}.
所以综合下,动态转移方程就是dp[i][j]=min{dp[i-1][j],dp[i][j-1]}+grid[i][j];

代码:
class Solution {
public:
int minPathSum(vector<vector<int> > &grid) {
if(grid.size()==)
return ;
vector<vector<int>> res(grid);
int i, j;
for(int j=; j<res[].size(); ++j){
res[][j] += res[][j-];
}
for(int j=; j<res.size(); ++j){
res[j][] += res[j-][];
}
for(i=; i<res.size(); ++i){
for(int j=; j<res[i].size(); ++j){
res[i][j] = min(res[i-][j], res[i][j-])+grid[i][j];
}
}
return res[grid.size()-][grid[].size()-]; //注意行列的size不一定一样
}
};
Minimum Path Sum(DFS,DP)的更多相关文章
- 64. Minimum Path Sum (Graph; DP)
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )
Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...
- Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...
- LeetCode: Minimum Path Sum 解题报告
Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...
- 【leetcode】Minimum Path Sum
Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...
- 【LeetCode练习题】Minimum Path Sum
Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...
- LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II
之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...
- 刷题64. Minimum Path Sum
一.题目说明 题目64. Minimum Path Sum,给一个m*n矩阵,每个元素的值非负,计算从左上角到右下角的最小路径和.难度是Medium! 二.我的解答 乍一看,这个是计算最短路径的,迪杰 ...
- leecode 每日解题思路 64 Minimum Path Sum
题目描述: 题目链接:64 Minimum Path Sum 问题是要求在一个全为正整数的 m X n 的矩阵中, 取一条从左上为起点, 走到右下为重点的路径, (前进方向只能向左或者向右),求一条所 ...
随机推荐
- 快速开发框架天梭(Tissot)
天梭(Tissot)集成SpringBoot+Dubbo等主流互联网技术栈,高度集成.优化方便快速搭建应用.某互金科技公司内部孵化框架,已应用于公司90%业务系统. 框架划分模块有: tissot-c ...
- Asp.Net 设计模式 之 “特殊”的单例模式
特殊的单例模式 要点在这里,提前预览: public SingleDemo() { name = "yy"; age = 20; //特殊的单例,this指代得失当前的Single ...
- CentOS6.8 RPM包安装快速zabbix22
CentOS6.8 RPM包安装快速zabbix22 yum install -y epel-release # yum install -y httpd php php-devel mysql-se ...
- 初学者对C++的切身感受
上周和一同学聊起了当前一些比较流行且运用广范的编程语言,苹果的IOS比起其它语言 来说更加言简意赅,简单明了,并且他现在也打算一直弄IOS.我之前一直是用C语言和 GNU ARM汇编语言,因为这两种语 ...
- 02Hibernate基本配置
Hibernate基本配置 1.引入jar 2.建立项目 3.创建实体类 package com.sqlserver.domain; public class Customer { long cust ...
- CentOS 初体验十四:阿里云安装Gitlab
网址:https://about.gitlab.com/install/#centos-7 https://blog.csdn.net/zhaoyanjun6/article/details/7914 ...
- Java 序列化Serializable详解(附详细例子)
Java 序列化Serializable详解(附详细例子) 1.什么是序列化和反序列化Serialization(序列化)是一种将对象以一连串的字节描述的过程:反序列化deserialization是 ...
- js正则表达式,只允许输入纯数字或‘/’
//输入框,限数字和/----需要多个数量询价,请以/分隔 function onlyonce(obj) {//先把非数字的都替换掉,除了数字和.obj.value = obj.value.repla ...
- npm run build报错(npm ERR! code ELIFECYCLE)的解决办法
具体报错如下图: 环境:centos7 应该node_modules安装问题,我们需要重新安装 rm -rf node_modules rm package-lock.json npm cache c ...
- C++中const与constexpr区别
对于对象来说 const指的是编译期常量和运行时常量,两者并没有区分 constexpr特指编译期常量 对于函数来说 const可以修饰类的成员函数,被修饰的函数在执行期间不会改变对象的值. clas ...
