Minimum Path Sum(DFS,DP)
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
解法1:DFS,超时。
思路:其实类似对二叉树的DFS,只是终止条件不同,递归的终止条件就是到达最后一列,或者到达最后一行,因为最后一列的数字只有一个选择就是往下走,最后一行类似只有往右走。
当走到grid[rowMax-1][colMax-1],也就是一次路径完成,并和minSum做较,取较小的。
超时输入:
int my_grid[rowMax][colMax]={
{7,1,3,5,8,9,9,2,1,9,0,8,3,1,6,6,9,5},
{9,5,9,4,0,4,8,8,9,5,7,3,6,6,6,9,1,6},
{8,2,9,1,3,1,9,7,2,5,3,1,2,4,8,2,8,8},
{6,7,9,8,4,8,3,0,4,0,9,6,6,0,0,5,1,4},
{7,1,3,1,8,8,3,1,2,1,5,0,2,1,9,1,1,4},
{9,5,4,3,5,6,1,3,6,4,9,7,0,8,0,3,9,9},
{1,4,2,5,8,7,7,0,0,7,1,2,1,2,7,7,7,4},
{3,9,7,9,5,8,9,5,6,9,8,8,0,1,4,2,8,2},
{1,5,2,2,2,5,6,3,9,3,1,7,9,6,8,6,8,3},
{5,7,8,3,8,8,3,9,9,8,1,9,2,5,4,7,7,7},
{2,3,2,4,8,5,1,7,2,9,5,2,4,2,9,2,8,7},
{0,1,6,1,1,0,0,6,5,4,3,4,3,7,9,6,1,9}};
代码:
class Solution {
private:
int minSum;
vector<vector<int>> my_grid;
int rowMax;
int colMax;
public:
void tra(int i,int j,int sum){
sum+=my_grid[i][j];
if(j==colMax-&&i<rowMax)
{
++i;
for (i;i<rowMax;++i)
{
sum+=my_grid[i][j];
}
if(i==rowMax&&sum<minSum){
minSum=sum;
}
return;
}
if(i==rowMax-&&j<colMax)
{
++j;
for (j;j<colMax;++j)
{
sum+=my_grid[i][j];
}
if(j==colMax&&sum<minSum){
minSum=sum;
}
return;
}
tra(i,j+,sum);
tra(i+,j,sum);
}
int minPathSum(vector<vector<int>>& grid) {
minSum=(~(unsigned int))>>;
my_grid=grid;
rowMax=grid.size();
colMax=grid[].size();
tra(,,);
return minSum;
}
};
解法2:DP(还是不熟练,不太熟练递推dp和递归dp的区别,参考文章)
dp[100][100];该dp数组记录的是每个位置上的最优解,即到达这一点的路径最小值。假设我们要求以grid[i][j]为末尾的最小路径值,我们只需要求出它头上一个格子,和左边格子为末尾的最小路径值之中的最小值,也即min{dp[i-1][j],dp[i][j-1]}.
所以综合下,动态转移方程就是dp[i][j]=min{dp[i-1][j],dp[i][j-1]}+grid[i][j];

代码:
class Solution {
public:
int minPathSum(vector<vector<int> > &grid) {
if(grid.size()==)
return ;
vector<vector<int>> res(grid);
int i, j;
for(int j=; j<res[].size(); ++j){
res[][j] += res[][j-];
}
for(int j=; j<res.size(); ++j){
res[j][] += res[j-][];
}
for(i=; i<res.size(); ++i){
for(int j=; j<res[i].size(); ++j){
res[i][j] = min(res[i-][j], res[i][j-])+grid[i][j];
}
}
return res[grid.size()-][grid[].size()-]; //注意行列的size不一定一样
}
};
Minimum Path Sum(DFS,DP)的更多相关文章
- 64. Minimum Path Sum (Graph; DP)
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )
Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...
- Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...
- LeetCode: Minimum Path Sum 解题报告
Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...
- 【leetcode】Minimum Path Sum
Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...
- 【LeetCode练习题】Minimum Path Sum
Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...
- LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II
之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...
- 刷题64. Minimum Path Sum
一.题目说明 题目64. Minimum Path Sum,给一个m*n矩阵,每个元素的值非负,计算从左上角到右下角的最小路径和.难度是Medium! 二.我的解答 乍一看,这个是计算最短路径的,迪杰 ...
- leecode 每日解题思路 64 Minimum Path Sum
题目描述: 题目链接:64 Minimum Path Sum 问题是要求在一个全为正整数的 m X n 的矩阵中, 取一条从左上为起点, 走到右下为重点的路径, (前进方向只能向左或者向右),求一条所 ...
随机推荐
- nvm安装nodejs
1. 安装nvm 下载 nvm-windows解压缩 nvm-windows解压缩 nvm-setup双击运行 nvm-setup.exe选择next选择 [D:\dev][path1] 或 默认路径 ...
- php学习知识点
1.PHP 代码被包含在特殊的起始符和结束符中 <? ?> 2.php的用途 服务端脚本 命令行脚本. 编写桌面应用程序.3.输出语句.文本 echo printf4.$_SERVER 是 ...
- iOS Programming Auto Layout: Programmatic Constraints 自动布局:通过编程限制
iOS Programming Auto Layout: Programmatic Constraints 1. However, if your views are created in co ...
- Log4net快速搭建
nuget安装log4net 2018.12.10当前版本为2.0.8 找到所在项目的[Properties->AssemblyInfo] 在底部加上 [assembly: log4net.Co ...
- windows echo命令
ECHO命令是大家都熟悉的DOS批处理命令的一条子命令,但它的一些功能和用法也许你并不是全都知道,不信你瞧: 1. 作为控制批处理命令在执行时是否显示命令行自身的开关 格式:ECHO [ON|OFF ...
- chattr - 修改文件在Linux第二扩展文件系统(E2fs)上的特有属性
SYNOPSIS(总览) chattr [ -RV ] [ -v version ] [ mode ] files... DESCRIPTION(描述) chattr 修改文件在Linux第二扩展文件 ...
- 拒绝访问。 (异常来自 HRESULT:0x80070005 (E_ACCESSDENIED))
由于我添加了一个一般处理程序,再运行就出现报错. 解决方法是: 运行dcomcnfg 点组件服务->服务->电脑->我的电脑->DCOM 配置 找到“Windows M ...
- c++复合类型
1.数组 数组存储同类型的值: 数组使用下标或索引对元素进行标号,从0开始编号: 只能在定义数组时才能使用初始化,此后就不可以了,也不能将一个数组赋给另一个数组: 初始化数组时,提供的值可以少于数组元 ...
- CodeForces - 1020C C - Elections(贪心+枚举)
题目: 党派竞争投票 有n个人,m个党派,这n个人每个人有一个想要投的党派的编号Pi,如果想要这个人改变他的想法,那么就需要花费Ci元钱. 现在你是编号为1的党派,如果你想要赢(你的票数严格大于其他党 ...
- 如何自己实现session功能
session字如其意,它的存在就是为了保持会话状态.PHP中的$_SESSION让我们很方便的使用它,但是如果PHP本身不提供这个功能,我们该如何实现呢?且听我慢慢忽悠. session的实现原理 ...
