很容易看出来一个同余式,说到底是解一个线性同余方程,计算机解通常有拓展欧几里得和欧拉定理两种算法,参照去年的NOIP水题,问题是这题数据范围是2^32所以要int64 TAT

#include<cstdio>

#include<iostream>

#include<string.h>

#include<math.h>

using namespace std;

__int64 exgcd(__int64 a,__int64 b,__int64&x,__int64 &y)

{

if(b==0)

{

x=1;y=0;return a;

}

else

{

__int64 r=exgcd(b,a %b,y,x);

y-=x*(a/b);

return r;

}

}

__int64 lme(__int64 a,__int64 b,__int64n)//ax=b(mod n)

{

__int64 x,y;

__int64 d=exgcd(a,n,x,y);

if(b%d!=0)return -1;

__int64 e=x*(b/d)%n+n;

return e%(n/d);

}

int main()

{

__int64 a,b,c,k;

scanf("%I64d%I64d%I64d%I64d",&a,&b,&c,&k);

while(1)

{

__int64 d=lme(c,b-a,1LL<<k);

if (d==-1)

{

printf("FOREVER\n");

}

else

{

printf("%I64d\n",d);

}

scanf("%I64d%I64d%I64d%I64d",&a,&b,&c,&k);

if(a==0 && b==0 && c==0 && k==0) break;

}

return 0;

}

POJ 2115 C Looooops【数论】的更多相关文章

  1. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  2. 【题解】POJ 2115 C Looooops (Exgcd)

    POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...

  3. POJ 2115 C Looooops(模线性方程)

    http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思 ...

  4. POJ 2115 C Looooops(Exgcd)

    [题目链接] http://poj.org/problem?id=2115 [题目大意] 求for (variable = A; variable != B; variable += C)的循环次数, ...

  5. poj 2115 C Looooops——exgcd模板

    题目:http://poj.org/problem?id=2115 exgcd裸题.注意最后各种%b.注意打出正确的exgcd板子.就是别忘了/=g. #include<iostream> ...

  6. POJ 2115 C Looooops

    扩展GCD...一定要(1L<<k),不然k=31是会出错的 ....                        C Looooops Time Limit: 1000MS   Mem ...

  7. Poj 2115 C Looooops(exgcd变式)

    C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22704 Accepted: 6251 Descripti ...

  8. poj 2115 C Looooops 扩展欧几里德

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23616   Accepted: 6517 Descr ...

  9. POJ 2115 C Looooops扩展欧几里得

    题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...

随机推荐

  1. Java GUI简介

    Java有2个GUI库:AWT.Swing. AWT是SUN最早提供的GUI库,依赖本地平台,界面不好看,功能有限.之后推出了Swing,Swing并没有完全替代AWT,而是建立在AWT基础上的.Sw ...

  2. P3371 【模板】单源最短路径

    题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出发点的编号. 接下来M行每行包含三 ...

  3. javajsp,Servlet:Property 'Id' not found

    avax.el.PropertyNotFoundException: Property 'Id' not found on type  org.androidpn.server.model.CarSo ...

  4. appium学习链接记录

    乙醇大师的园子: http://www.cnblogs.com/nbkhic/tag/appium/ webDriver java版 https://github.com/easonhan007/we ...

  5. function calling convention

    这是2013年写的一篇旧文,放在gegahost.net上面 http://raison.gegahost.net/?p=31 February 19, 2013 function calling c ...

  6. toast插件的简单封装(样式适用pc后台管理系统的场景)

    直接分三个步骤吧: 1.手写一个toast.vue组件 <template> <transition name="toast-fade"> <div ...

  7. IOS OS X 中集中消息的传递机制

    1 KVO (key-value Observing) 是提供对象属性被改变是的通知机制.KVO的实现实在Foundation中,很多基于 Foundation 的框架都依赖与它.如果只对某一个对象的 ...

  8. (转)SpringMVC学习(八)——SpringMVC中的异常处理器

    http://blog.csdn.net/yerenyuan_pku/article/details/72511891 SpringMVC在处理请求过程中出现异常信息交由异常处理器进行处理,自定义异常 ...

  9. Android(java)学习笔记165:开发一个多界面的应用程序之不同界面间互相传递数据(短信助手案例的优化:请求码和结果码)

    1.开启界面获取返回值 (1)采用一种特殊的方式开启Activity:               startActivityForResult(intent , 0): (2)在被开启的Activi ...

  10. Linux一些常用小命令

    使用xshell连接虚拟机 rz 上传的linux服务器 sz 从服务器上下载 df 查看磁盘大小 -h du 查看所有磁盘(硬盘)大小(-h 可读  -s统计当前目录的大小)du -sh free ...