Hubtown

时间限制: 10 Sec  内存限制: 256 MB

题目描述

Hubtown is a large Nordic city which is home to n citizens. Every morning, each of its citizens wants to travel to the central hub from which the city gets its name, by using one of the m commuter trains which pass through the city. Each train line is a ray (i.e., a line segment which extends infinitely long in one direction), ending at the central hub, which is located at coordinates (0, 0). However, the train lines have limited capacity (which may vary between train lines), so some train lines may become full, leading to citizens taking their cars instead of commuting. The city council wishes to minimize the number of people who go by car. In order to do this, they will issue instructions stating which citizens are allowed to take which train. 
A citizen will always take the train line which is of least angular distance from its house. However, if a citizen is exactly in the middle between two train lines, they are willing to take either of them, and city council can decide which of the two train lines the citizen should use. 
See Figure H.1 for an example.

Figure H.1: Illustration of Sample Input 1. The dashed arrows indicate which train lines the citizens are closest to (note that we are measuring angular distances, not Euclidean distance).
Your task is to help the council, by finding a maximum size subset of citizens who can go by train in the morning to the central hub, ensuring that each of the citizens take one of the lines they are closest to, while not exceeding the capacity of any train line. For this subset, you should also print what train they are to take.

输入

The first line of input contains two integers n and m, where 0 ≤ n ≤ 200 000 is the number of citizens, and 1 ≤ m ≤ 200 000 is the number of train lines.
The next n lines each contain two integers x and y, the Cartesian coordinates of a citizen’s home. No citizen lives at the central hub of the city.
Then follow m lines, each containing three integers x, y, and c describing a train line, where (x, y) are the coordinates of a single point (distinct from the central hub of the city) which the train line passes through and 0 ≤ c ≤ n is the capacity of the train line. The train line is the ray starting at (0, 0) and passing through (x, y).
All coordinates x and y (both citizens’ homes and the points defining the train lines) are bounded by 1000 in absolute value. No two train lines overlap, but multiple citizens may live at the same coordinates.

输出

First, output a single integer s – the maximum number of citizens who can go by train. Then,output s lines, one for each citizen that goes by train. On each line, output the index of the citizen followed by the index of the train line the citizen takes. The indices should be zero-indexed (i.e.,between 0 and n − 1 for citizens, and between 0 and m − 1 for train lines, respectively), using the same order as they were given in the input.

样例输入

3 2
2 0
-1 0
-2 -1
1 -1 1
1 1 2

样例输出

3
0 1
1 1
2 0

 

题意:n个人,m个铁轨,每个人要到最近的铁轨去,若最近的有两个可二选一,每个铁轨能承受的人数有限,问最多多少个人可以到铁轨上。

做法:先对人和铁轨一起进行极角排序,然后记录一下距离人最近的上下两个铁轨,之后建图跑最大流。具体细节在代码中说明。

此外,这题能跑最大流是因为网络流跑二分图匹配的时间复杂度是 O(m*sqrt(n)),而且实际编程中速度会更快。

#include<bits/stdc++.h>
#define N 400050
#define M 2000050
using namespace std;
typedef struct
{
int v;
int flow;
} ss; ss edg[M];
vector<int>edges[N];
int now_edges=; void addedge(int u,int v,int flow)
{
// printf(" %d %d %d\n",u,v,flow);
edges[u].push_back(now_edges);
edg[now_edges++]=(ss)
{
v,flow
};
edges[v].push_back(now_edges);
edg[now_edges++]=(ss)
{
u,
};
} int dis[N],S,T;
bool bfs()
{
memset(dis,,sizeof(dis));
queue<int>q;
q.push(S);
dis[S]=; while(!q.empty())
{
int now=q.front();
q.pop();
int Size=edges[now].size(); for(int i=; i<Size; i++)
{
ss e=edg[edges[now][i]];
if(e.flow>&&dis[e.v]==)
{
dis[e.v]=dis[now]+;
q.push(e.v);
}
}
}
if(dis[T]==)
return ;
return ; }
int current[N];
int dfs(int now,int maxflow)
{
if(now==T)
return maxflow;
int Size=edges[now].size();
for(int i=current[now]; i<Size; i++)
{
current[now]=i;
ss &e=edg[edges[now][i]]; if(e.flow>&&dis[e.v]==dis[now]+)
{
int Flow=dfs(e.v,min(maxflow,e.flow)); if(Flow)
{
e.flow-=Flow;
edg[edges[now][i]^].flow+=Flow;
return Flow;
}
}
}
return ;
} int dinic()
{
int ans=,flow;
while(bfs())
{
memset(current,,sizeof(current));
while(flow=dfs(S,INT_MAX/))
ans+=flow;
}
return ans;
} struct orz //铁轨和人的统一结构体,value<0为人,value>0为铁轨
{
int value,number;
int x,y,sgn; void setxy(int a,int b)
{
x=a;
y=b;
if(!x)sgn=y>;
else sgn=x>;
}
}; int cross(int x1,int y1,int x2,int y2)//计算叉积
{
return (x1*y2-x2*y1);
} int compare(orz a,orz b,orz c)//计算极角
{
return cross((b.x-a.x),(b.y-a.y),(c.x-a.x),(c.y-a.y));
} bool cmp(orz a,orz b)
{
if(a.sgn!=b.sgn)return a.sgn<b.sgn;
orz c;//原点
c.x = ;
c.y = ;
if(compare(c,a,b)==)//计算叉积,函数在上面有介绍,如果叉积相等,按照X从小到大排序
return a.number>b.number;
else
return compare(c,a,b)<;
} bool point_on_line(orz a,orz b)
{
int d1=__gcd(abs(a.x),abs(a.y)),d2=__gcd(abs(b.x),abs(b.y));
return (a.x/d1==b.x/d2)&&(a.y/d1==b.y/d2);
} const long double epsss=1e-; struct Point
{
int x,y;
Point() {}
Point(int _x,int _y)
{
x=_x,y=_y;
}
};
struct Pointd
{
long double x,y;
Pointd() {}
Pointd(long double _x,long double _y)
{
x=_x,y=_y;
}
}; int cross(const Point&a,const Point&b)
{
return a.x*b.y-a.y*b.x;
} long double crossd(const Pointd&a,const Pointd&b)
{
return a.x*b.y-a.y*b.x;
} int sig(int x)
{
if(x==)
return ;
return x>?:-;
} int sigd(long double x)
{
if(fabs(x)<epsss)
return ;
return x>?:-;
} int distance_cmp(const orz&_a,const orz&_b,const orz&_c)//判断点a距离哪一条射线近
{
Point a(_a.x,_a.y);
Point b(_b.x,_b.y);
Point c(_c.x,_c.y);
Point d;
if(!cross(b,c))
{
d=Point(-b.y,b.x);
if(!cross(a,d))
return ;
if(sig(cross(d,a))==sig(cross(d,b)))
return -;
return ;
}
long double L=sqrt(b.x*b.x+b.y*b.y);
long double R=sqrt(c.x*c.x+c.y*c.y);
Pointd aa(a.x,a.y);
Pointd bb(b.x,b.y);
Pointd cc(c.x,c.y);
Pointd dd(d.x,d.y);
bb.x*=R;
bb.y*=R;
cc.x*=L;
cc.y*=L;
dd=Pointd(bb.x+cc.x,bb.y+cc.y);
if(!sigd(crossd(aa,dd)))
return ;
if(sigd(crossd(dd,aa))==sigd(crossd(dd,bb)))
return -;
return ;
} orz allpoint[N*];
int up[N],down[N]; int main()
{
int n,m;
scanf("%d %d",&n,&m);
S=n+m+;
T=n+m+; for(int i=; i<=n; i++)
{
int x,y;
scanf("%d %d",&x,&y);
allpoint[i].setxy(x,y);
allpoint[i].value=-;
allpoint[i].number=i;
addedge(S,i,);
} for(int i=; i<=m; i++)
{
int x,y,z;
scanf("%d %d %d",&x,&y,&z);
allpoint[i+n].setxy(x,y);
allpoint[i+n].value=z;
allpoint[i+n].number=i+n;
addedge(i+n,T,z);
} sort(allpoint+,allpoint++n+m,cmp);//对人和铁轨一起进行极角排序 for(int i=n+m;i>=;i--)if(allpoint[i].value>=){down[]=i;break;} //寻找最后一个铁轨
for(int i=;i<=n+m;i++)
{
down[i]=down[i-];
if(allpoint[i].value>=)down[i]=i;
} for(int i=;i<=n+m;i++)if(allpoint[i].value>=){up[n+m+]=i;break;}//寻找第一个铁轨
for(int i=n+m;i>=;i--)
{
up[i]=up[i+];
if(allpoint[i].value>=)up[i]=i;
} for(int i=;i<=n+m;i++)
if(allpoint[i].value<)
{
int a=up[i],b=down[i]; if(a==b)addedge(allpoint[i].number,allpoint[a].number,);
else
if(point_on_line(allpoint[i],allpoint[a]))addedge(allpoint[i].number,allpoint[a].number,);
else
if(point_on_line(allpoint[i],allpoint[b]))addedge(allpoint[i].number,allpoint[b].number,);
else
{
int t=distance_cmp(allpoint[i],allpoint[a],allpoint[b]);
if(t<=)addedge(allpoint[i].number,allpoint[a].number,);
if(t>=)addedge(allpoint[i].number,allpoint[b].number,);
}
} int sum=dinic();
printf("%d\n",sum);
for(int i=; i<=n; i++)
{
int Size=edges[i].size();
for(int j=; j<Size; j++)
{
if(edg[edges[i][j]^].flow&&edg[edges[i][j]].v!=S)//注意这里要判一下另一个点是不是起点
{
printf("%d %d\n",i-,edg[edges[i][j]].v-n-);
break;
}
}
}
return ;
}
 

Hubtown的更多相关文章

  1. Hubtown(最大流)

    Hubtown 时间限制: 1 Sec  内存限制: 128 MB提交: 23  解决: 11[提交] [状态] [讨论版] [命题人:admin] 题目描述 Hubtown is a large N ...

  2. 2017-2018 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2017)

    A. Airport Coffee 设$f_i$表示考虑前$i$个咖啡厅,且在$i$处买咖啡的最小时间,通过单调队列优化转移. 时间复杂度$O(n)$. #include<cstdio> ...

  3. 2017-2018 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2017) Solution

    A - Airport Coffee 留坑. B - Best Relay Team 枚举首棒 #include <bits/stdc++.h> using namespace std; ...

随机推荐

  1. codevs 1008 选数

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n ...

  2. 通过90行代码学会HTML5 WebSQL的4种基本操作

    Web SQL数据库API是一个独立的规范,在浏览器层面提供了本地对结构化数据的存储,已经被很多现代浏览器支持了. 我们通过一个简单的例子来了解下如何使用Web SQL API在浏览器端创建数据库表并 ...

  3. idea报错:The server time zone value '�й���׼ʱ��' is unrecognized or represents more than one time zone. You must configure either the server or JDBC driver (via the serverTimezone configu

    java.sql.SQLException: The server time zone value '�й���׼ʱ��' is unrecognized or represents more tha ...

  4. Ajax 发送OPTION请求

    从fetch说起,用fetch构造一个POST请求. fetch('http://127.0.0.1:8000/api/login', { method: "POST", head ...

  5. python_112_断言

    #断言 如果满足断言的执行程序,如果不满足则抛错误 assert type(1) is int print('断言正确的话,就继续执行') # assert type('a') is int #Ass ...

  6. dedeCMS数据库字段详细介绍

    dede_addonarticle 附加文章表 aid int(11) 文章编号 typeid int(11) 分类栏目编号 body mediumtext 文章内容 dede_addonflash ...

  7. iptables 过滤字符串

    iptables 过滤字符串 1. 开启iptables iptables -P OUTPUT ACCEPT       ###允许输出链 service iptables save          ...

  8. java在线聊天项目0.3版本 制作客户端窗体,实现发送按钮和回车发送信息功能,使用ActionListener监听事件中actionPerformed方法(用内部类和匿名内部类两种方法)

    方法一,使用匿名内部类的监听方法,因方法一致代码稍冗余 package com.swift; import java.awt.BorderLayout; import java.awt.Color; ...

  9. java在线聊天项目0.1版本 制作客户端窗体,使用swing(用户界面开发工具包)和awt(抽象窗口工具包)

    建立Chat项目,并在项目中创建窗口类 package com.swift; import java.awt.BorderLayout; import javax.swing.JFrame; impo ...

  10. C# IsNullOrEmpty与IsNullOrWhiteSpace

    IsNullOrEmpty:非空非NULL判断 IsNullOrWhiteSpace:非空非NULL非空格判断 后者优于前者 if (!string.IsNullOrWhiteSpace(valueE ...