Remainder

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2122    Accepted Submission(s): 449

Problem Description
Coco is a clever boy, who is good at mathematics. However, he is puzzled by a difficult mathematics problem. The problem is: Given three integers N, K and M, N may adds (‘+’) M, subtract (‘-‘) M, multiples (‘*’) M or modulus (‘%’) M (The definition of ‘%’ is given below), and the result will be restored in N. Continue the process above, can you make a situation that “[(the initial value of N) + 1] % K” is equal to “(the current value of N) % K”? If you can, find the minimum steps and what you should do in each step. Please help poor Coco to solve this problem. 
You should know that if a = b * q + r (q > 0 and 0 <= r < q), then we have a % q = r.
 
Input
There are multiple cases. Each case contains three integers N, K and M (-1000 <= N <= 1000, 1 < K <= 1000, 0 < M <= 1000) in a single line.
The input is terminated with three 0s. This test case is not to be processed.
 
Output
For each case, if there is no solution, just print 0. Otherwise, on the first line of the output print the minimum number of steps to make “[(the initial value of N) + 1] % K” is equal to “(the final value of N) % K”. The second line print the operations to do in each step, which consist of ‘+’, ‘-‘, ‘*’ and ‘%’. If there are more than one solution, print the minimum one. (Here we define ‘+’ < ‘-‘ < ‘*’ < ‘%’. And if A = a1a2...ak and B = b1b2...bk are both solutions, we say A < B, if and only if there exists a P such that for i = 1, ..., P-1, ai = bi, and for i = P, ai < bi)
 
Sample Input
2 2 2
-1 12 10
0 0 0
 
Sample Output
0
2
*+

/*
其他没什么好说的,数字太大需要%(k*m),这个可以证明就等于对n进行+、-m操作
不影响结果,属于正常操作
*/
#include<iostream>
#include<queue>
#include<string>
using namespace std;
bool vis[]; struct point
{
int val;
int step;
string s;
}p,t; void bfs(int n,int k,int m)
{
memset(vis,false,sizeof(vis));
queue<point> q;
int s=((n+)%k+k)%k;
t.val=n;
t.step=;
t.s="";
vis[(n%k+k)%k]=true;
q.push(t);
while(!q.empty())
{
t=q.front();
q.pop();
if(s==(t.val%k+k)%k)
{
cout<<t.step<<endl;
cout<<t.s<<endl;
return ;
}
for(int i=;i<;i++)
{
p=t;
p.step++;
if(i==)
{
p.val=(t.val+m)%(k*m);
p.s+='+';
}
else if(i==)
{
p.val=(t.val-m)%(k*m);
p.s+='-';
}
else if(i==)
{
p.val=(t.val*m)%(k*m);
p.s+='*';
}
else if(i==)
{
p.val=(t.val%m+m)%m%(k*m);
p.s+='%';
}
if(!vis[(p.val%k+k)%k])
{
q.push(p);
vis[(p.val%k+k)%k]=true;
}
}
}
cout<<<<endl;
}
int main()
{
int n,m,k;
while(cin>>n>>k>>m,k || m || n)
bfs(n,k,m);
return ;
}

hdu 1104 数论+bfs的更多相关文章

  1. hdu - 1104 Remainder (bfs + 数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=1104 注意这里定义的取模运算和计算机的%是不一样的,这里的取模只会得到非负数. 而%可以得到正数和负数. 所以需 ...

  2. HDU 1104 Remainder(BFS 同余定理)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1104 在做这道题目一定要对同余定理有足够的了解,所以对这道题目对同余定理进行总结 首先要明白计算机里的 ...

  3. HDU 1104 Remainder (BFS(广度优先搜索))

    Remainder Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  4. GCD and LCM HDU 4497 数论

    GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...

  5. HDU 1104 Remainder (BFS)

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1104 题意:给你一个n.m.k,有四种操作n+m,n-m,n*m,n%m,问你最少经过多少步,使得最后 ...

  6. hdu.1104.Remainder(mod && ‘%’ 的区别 && 数论(k*m))

    Remainder Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  7. HDU 1104 Remainder( BFS(广度优先搜索))

    Remainder Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  8. HDU 1104 Remainder (BFS求最小步数 打印路径)

    题目链接 题意 : 给你N,K,M,N可以+,- ,*,% M,然后变为新的N,问你最少几次操作能使(原来的N+1)%K与(新的N)%k相等.并输出相应的操作. 思路 : 首先要注意题中给的%,是要将 ...

  9. HDU(4528),BFS,2013腾讯编程马拉松初赛第五场(3月25日)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=4528 小明系列故事——捉迷藏 Time Limit: 500/200 MS (Java/O ...

随机推荐

  1. 9.18 New Start

    好久没上cnblogs,今天提示我说园龄已经2年1个月了.今天就用一个日记的形式开始第一篇博客吧.我以后比较精髓的文章就放在cnblogs,csdn博客也继续会更新,不过也会慢慢提高文章质量. 今天是 ...

  2. SVN中的check out与export的区别

    http://blog.csdn.net/zndxlxm/article/details/7763116 check out跟check in对应,export跟import对应. check out ...

  3. Oracle旗下软件官网下载速度过慢解决办法

    平常下载Oracle旗下软件官网的产品资源,会发现速度很慢,如下载JDK和mysql时, 这样很浪费我们的时间 解决办法: 复制自己需要下载的资源链接 使用迅雷下载该资源 速度均很快 如下载Mysql ...

  4. non-JRMP server at remote endpoint

    #在相应的domain的domain.xml文件添加下面红色设置,并重启domain <admin-service system-jmx-connector-name="system& ...

  5. 通过工厂模式批量创建对象后调用其中方法 出现XXXis not a function()问题原因

    //通过工厂模式批量创建 function Computer(color,weight,logo){         var obj=new Object();         obj.color=c ...

  6. (10)zabbix item key详解

    1. 灵活的参数 参数位置可用接收任意参数则是灵活的.例如vfs.fs.size[*],”*”星号可以使用任意的参数,例如:vfs.fs.size[/]vfs.fs.size[/opt] 2. Key ...

  7. CSS3的border-image

    border-image:none|image-url|number|percentage|stretch,repeat,round 参数: none:默认,无背景图片 url:地址,可以为绝对,也可 ...

  8. 【linux】【网络安全】linux中怎样关闭ICMP回应功能

    引用自:http://blog.csdn.net/qq844352155/article/details/49700121       linux中怎样关闭ICMP回应功能   输入:   echo ...

  9. gnu make规则记录

    1. $(shell CMD) 名称: 执行 shell 命令函数 功能: 在新的 shell 中执行 CMD 命令 返回值: CMD 在 shell 中执行的结果 例如:PLATFORM=$(she ...

  10. python图像插值

    最近邻:选择离它所映射到的位置最近的输入像素的灰度值为插值结果. 最临近插值 图像的缩放很好理解,就是图像的放大和缩小.传统的绘画工具中,有一种叫做“放大尺”的绘画工具,画家常用它来放大图画.当然,在 ...