[BZOJ3545] [ONTAK2010]Peaks(线段树合并 + 离散化)
由于困难值小于等于x这个很恶心,可以离线处理,将边权,和询问时的x排序。
每到一个询问的时候,将边权小于等于x的都合并起来再询问。
。。
有重复元素的线段树合并的时间复杂度是nlog^2n
#include <cstdio>
#include <iostream>
#include <algorithm>
#define N 500001 int n, m, q, cnt, tot, size;
int sum[N * 10], ls[N * 10], rs[N * 10], a[N], b[N], f[N], root[N], ans[N], c[N << 1]; struct node
{
int x, y, z, id;
node(int x = 0, int y = 0, int z = 0, int id = 0) : x(x), y(y), z(z), id(id) {}
}p[N], ask[N]; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline bool cmp1(node x, node y)
{
return x.z < y.z;
} inline bool cmp2(node x, node y)
{
return x.y < y.y;
} inline void merge(int &x, int y)
{
if(!x || !y)
{
x += y;
return;
}
sum[x] += sum[y];
merge(ls[x], ls[y]);
merge(rs[x], rs[y]);
} inline void insert(int &now, int l, int r, int x)
{
now = ++size;
if(l == r)
{
sum[now] = 1;
return;
}
int mid = (l + r) >> 1;
if(x <= mid) insert(ls[now], l, mid, x);
else insert(rs[now], mid + 1, r, x);
sum[now] = sum[ls[now]] + sum[rs[now]];
} inline int query(int now, int l, int r, int x)
{
if(l == r) return l;
int mid = (l + r) >> 1;
if(x <= sum[ls[now]])
return query(ls[now], l, mid, x);
else
return query(rs[now], mid + 1, r, x - sum[ls[now]]);
} inline int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
} int main()
{
int i, j, x, y, z;
n = read();
m = read();
q = read();
for(i = 1; i <= n; i++) a[i] = b[i] = read();
std::sort(b + 1, b + n + 1);
cnt = std::unique(b + 1, b + n + 1) - b - 1;
for(i = 1; i <= n; i++)
{
a[i] = std::lower_bound(b + 1, b + cnt + 1, a[i]) - b;
f[i] = i;
insert(root[i], 1, cnt, a[i]);
}
for(i = 1; i <= m; i++)
{
x = read();
y = read();
c[i] = z = read();
p[i] = node(x, y, z, 0);
}
for(i = 1; i <= q; i++)
{
x = read();
c[i + m] = y = read();
z = read();
ask[i] = node(x, y, z, i);
}
std::sort(c + 1, c + m + q + 1);
tot = std::unique(c + 1, c + m + q + 1) - c - 1;
for(i = 1; i <= m; i++)
p[i].z = std::lower_bound(c + 1, c + tot + 1, p[i].z) - c;
for(i = 1; i <= q; i++)
ask[i].y = std::lower_bound(c + 1, c + tot + 1, ask[i].y) - c;
std::sort(p + 1, p + m + 1, cmp1);
std::sort(ask + 1, ask + q + 1, cmp2);
j = 1;
for(i = 1; i <= q; i++)
{
while(j <= m && p[j].z <= ask[i].y)
{
x = find(p[j].x);
y = find(p[j].y);
if(x ^ y)
{
f[y] = x;
merge(root[x], root[y]);
}
j++;
}
x = find(ask[i].x);
if(ask[i].z > sum[root[x]]) ans[ask[i].id] = -1;
else ans[ask[i].id] = b[query(root[x], 1, cnt, sum[root[x]] - ask[i].z + 1)];
}
for(i = 1; i <= q; i++) printf("%d\n", ans[i]);
return 0;
}
[BZOJ3545] [ONTAK2010]Peaks(线段树合并 + 离散化)的更多相关文章
- 【bzoj3545】[ONTAK2010]Peaks 线段树合并
[bzoj3545][ONTAK2010]Peaks 2014年8月26日3,1512 Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路 ...
- BZOJ.3545.[ONTAK2010]Peaks(线段树合并)
题目链接 \(Description\) 有n个座山,其高度为hi.有m条带权双向边连接某些山.多次询问,每次询问从v出发 只经过边权<=x的边 所能到达的山中,第K高的是多少. \(Solut ...
- Peaks 线段树合并
Peaks 线段树合并 \(n\)个带权值\(h_i\)山峰,有\(m\)条山峰间双向道路,\(q\)组询问,问从\(v_i\)开始只经过\(h_i\le x\)的路径所能到达的山峰中第\(k\)高的 ...
- bzoj3545 Peaks 线段树合并
离线乱搞... 也就是一个线段树合并没什么 #include<algorithm> #include<iostream> #include<cstring> #in ...
- 【线段树合并】bzoj3545: [ONTAK2010]Peaks
1A还行 Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问, ...
- BZOJ3545 Peaks 离线处理+线段树合并
题意: 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经 ...
- 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数
题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...
- bzoj3545: [ONTAK2010]Peaks 重构树 主席树
题目链接 bzoj3545: [ONTAK2010]Peaks 题解 套路重构树上主席树 代码 #include<cstdio> #include<algorithm> #de ...
- 线段树合并&&启发式合并笔记
这俩东西听起来很高端,实际上很好写,应用也很多~ 线段树合并 线段树合并,顾名思义,就是建立一棵新的线段树保存原有的两颗线段树的信息. 考虑如何合并,对于一个结点,如果两颗线段树都有此位置的结点,则直 ...
随机推荐
- [Rational Rose 2007]解决启动报”解决无法启动此程序因为丢失suite objects.dll“的问题
问题根源1:不是丢失suite objects.dll文件,而是环境变量配置错误或无配置 假如安装目录如:C:\Program Files\Rational 需要配置环境变量的路径为:C:\Progr ...
- lambda表达式的简单入门
前言:本人在看<Java核心技术I>的时候对lamdba表达式还不是太上心,只是当做一个Java 8的特性了解一下而已,可是在<Java核心技术II>里面多次用到,所以重新入门 ...
- leetcode_1049. Last Stone Weight II_[DP]
1049. Last Stone Weight II https://leetcode.com/problems/last-stone-weight-ii/ 题意:从一堆石头里任选两个石头s1,s2, ...
- iOS,APP退到后台,获取推送成功的内容并且语音播报内容。
老铁,我今天忙了一下午就为解决这个问题,网上有一些方法,说了一堆关于这个挂到后台收到推送并且获得推送内容的问题,有很多人都说APP挂到后台一会就被杀死.但实际上可以有办法解决的. WechatIMG3 ...
- dubbo 快速入门
1. 步骤 实现消费者调用生产者服务接口. 2.安装zookeeper 3.创建maven 工程 4.安装dobboadmin 平台实现监控 5.dubbo 目录结构 ------dubbo-mem ...
- CPP-基础:运算符重载详解
1.运算符重载定义: C++中预定义的运算符的操作对象只能是基本数据类型.但实际上,对于许多用户自定义类型(例如类),也需要类似的运算操作.这时就必须在C++中重新定义这些运算符,赋予已有运算符新的功 ...
- CPP-基础:windows api 多线程---互斥量、信号量、临界值、事件区别
http://blog.csdn.net/wangsifu2009/article/details/6728155 四种进程或线程同步互斥的控制方法:1.临界区:通过对多线程的串行化来访问公共资源或一 ...
- PHP的PDF扩展库TCPDF将中文字体设置为内嵌字体的方法
1. 下载要设置的字体,如名为simfang.ttf,放在./vendor/tecnickcom/tcpdf/tools目录中 2.在tools目录中按住shift,点击鼠标右键,点击“在此处打开命令 ...
- kubernetes概念
kubernetes blog cluster cluster是计算.存储.和网络资源的集合,kubernetes利用这些资源运行各种基于容器的应用. master master是cluster的大脑 ...
- 【整理】C#文件操作大全
文件与文件夹操作主要用到以下几个类: 1.File类: 提供用于创建.复制.删除.移动和打开文件的静态方法,并协助创建 FileStream 对象. msdn:http://msdn.microsof ...