[BZOJ3545] [ONTAK2010]Peaks(线段树合并 + 离散化)
由于困难值小于等于x这个很恶心,可以离线处理,将边权,和询问时的x排序。
每到一个询问的时候,将边权小于等于x的都合并起来再询问。
。。
有重复元素的线段树合并的时间复杂度是nlog^2n
#include <cstdio>
#include <iostream>
#include <algorithm>
#define N 500001 int n, m, q, cnt, tot, size;
int sum[N * 10], ls[N * 10], rs[N * 10], a[N], b[N], f[N], root[N], ans[N], c[N << 1]; struct node
{
int x, y, z, id;
node(int x = 0, int y = 0, int z = 0, int id = 0) : x(x), y(y), z(z), id(id) {}
}p[N], ask[N]; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline bool cmp1(node x, node y)
{
return x.z < y.z;
} inline bool cmp2(node x, node y)
{
return x.y < y.y;
} inline void merge(int &x, int y)
{
if(!x || !y)
{
x += y;
return;
}
sum[x] += sum[y];
merge(ls[x], ls[y]);
merge(rs[x], rs[y]);
} inline void insert(int &now, int l, int r, int x)
{
now = ++size;
if(l == r)
{
sum[now] = 1;
return;
}
int mid = (l + r) >> 1;
if(x <= mid) insert(ls[now], l, mid, x);
else insert(rs[now], mid + 1, r, x);
sum[now] = sum[ls[now]] + sum[rs[now]];
} inline int query(int now, int l, int r, int x)
{
if(l == r) return l;
int mid = (l + r) >> 1;
if(x <= sum[ls[now]])
return query(ls[now], l, mid, x);
else
return query(rs[now], mid + 1, r, x - sum[ls[now]]);
} inline int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
} int main()
{
int i, j, x, y, z;
n = read();
m = read();
q = read();
for(i = 1; i <= n; i++) a[i] = b[i] = read();
std::sort(b + 1, b + n + 1);
cnt = std::unique(b + 1, b + n + 1) - b - 1;
for(i = 1; i <= n; i++)
{
a[i] = std::lower_bound(b + 1, b + cnt + 1, a[i]) - b;
f[i] = i;
insert(root[i], 1, cnt, a[i]);
}
for(i = 1; i <= m; i++)
{
x = read();
y = read();
c[i] = z = read();
p[i] = node(x, y, z, 0);
}
for(i = 1; i <= q; i++)
{
x = read();
c[i + m] = y = read();
z = read();
ask[i] = node(x, y, z, i);
}
std::sort(c + 1, c + m + q + 1);
tot = std::unique(c + 1, c + m + q + 1) - c - 1;
for(i = 1; i <= m; i++)
p[i].z = std::lower_bound(c + 1, c + tot + 1, p[i].z) - c;
for(i = 1; i <= q; i++)
ask[i].y = std::lower_bound(c + 1, c + tot + 1, ask[i].y) - c;
std::sort(p + 1, p + m + 1, cmp1);
std::sort(ask + 1, ask + q + 1, cmp2);
j = 1;
for(i = 1; i <= q; i++)
{
while(j <= m && p[j].z <= ask[i].y)
{
x = find(p[j].x);
y = find(p[j].y);
if(x ^ y)
{
f[y] = x;
merge(root[x], root[y]);
}
j++;
}
x = find(ask[i].x);
if(ask[i].z > sum[root[x]]) ans[ask[i].id] = -1;
else ans[ask[i].id] = b[query(root[x], 1, cnt, sum[root[x]] - ask[i].z + 1)];
}
for(i = 1; i <= q; i++) printf("%d\n", ans[i]);
return 0;
}
[BZOJ3545] [ONTAK2010]Peaks(线段树合并 + 离散化)的更多相关文章
- 【bzoj3545】[ONTAK2010]Peaks 线段树合并
[bzoj3545][ONTAK2010]Peaks 2014年8月26日3,1512 Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路 ...
- BZOJ.3545.[ONTAK2010]Peaks(线段树合并)
题目链接 \(Description\) 有n个座山,其高度为hi.有m条带权双向边连接某些山.多次询问,每次询问从v出发 只经过边权<=x的边 所能到达的山中,第K高的是多少. \(Solut ...
- Peaks 线段树合并
Peaks 线段树合并 \(n\)个带权值\(h_i\)山峰,有\(m\)条山峰间双向道路,\(q\)组询问,问从\(v_i\)开始只经过\(h_i\le x\)的路径所能到达的山峰中第\(k\)高的 ...
- bzoj3545 Peaks 线段树合并
离线乱搞... 也就是一个线段树合并没什么 #include<algorithm> #include<iostream> #include<cstring> #in ...
- 【线段树合并】bzoj3545: [ONTAK2010]Peaks
1A还行 Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问, ...
- BZOJ3545 Peaks 离线处理+线段树合并
题意: 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经 ...
- 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数
题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...
- bzoj3545: [ONTAK2010]Peaks 重构树 主席树
题目链接 bzoj3545: [ONTAK2010]Peaks 题解 套路重构树上主席树 代码 #include<cstdio> #include<algorithm> #de ...
- 线段树合并&&启发式合并笔记
这俩东西听起来很高端,实际上很好写,应用也很多~ 线段树合并 线段树合并,顾名思义,就是建立一棵新的线段树保存原有的两颗线段树的信息. 考虑如何合并,对于一个结点,如果两颗线段树都有此位置的结点,则直 ...
随机推荐
- EJB开发基础——EJB规范
1.EJB 容器 Enterprise Bean 是在称作 EJB 容器的特殊环境中运行的软件组件.容器容纳和管理 Enterprise Bean 的方式与 Java Web 服务器 ...
- 洛谷 P1363 幻想迷宫
题目描述 背景 Background (喵星人LHX和WD同心协力击退了汪星人的入侵,不幸的是,汪星人撤退之前给它们制造了一片幻象迷宫.) WD:呜呜,肿么办啊…… LHX:momo...我们一定能走 ...
- Python 元组、字典、集合操作总结
元组 a=('a',) a=('a','b') 特点 有序 不可变,不可以修改元组的值,无法为元组增加或者删除元素 元组的创建 a=('a',) a=('a','b') tuple('abcd') 转 ...
- Luogu P5327 [ZJOI2019]语言
ZJOI2019Day2的温暖题,然后考场上只会大常数的\(O(n\log^3 n)\),就懒得写拿了60pts走人 首先我们简化题意,容易发现每个点能到达的点形成了一个联通块,我们只需要统计出这个联 ...
- v-if与v-show的区别与选择
v-if与v-show的区别与选择 官网给的区别 v-if 是“真正”的条件渲染,因为它会确保在切换过程中条件块内的事件监听器和子组件适当地被销毁和重建. v-if也是惰性的:如果在初始渲染时条件 ...
- 理解 React,但不理解 Redux,该如何通俗易懂的理解 Redux?(转)
作者:Wang Namelos 链接:https://www.zhihu.com/question/41312576/answer/90782136来源:知乎 解答这个问题并不困难:唯一的要求是你熟悉 ...
- (1)JSTL的13个core标签库
标准标签库JSTL的全名为:Java Server Pages Standard Tag Library. (jsp standard tag library) JSTL主要提供了5大类标签库: ...
- bootstrap历练实例: 垂直胶囊式的导航菜单
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- POJ 3080 Blue Jeans、POJ 3461 Oulipo——KMP应用
题目:POJ3080 http://poj.org/problem?id=3080 题意:对于输入的文本串,输出最长的公共子串,如果长度相同,输出字典序最小的. 这题数据量很小,用暴力也是16ms,用 ...
- hihoCoder-1109-堆优化的Prim
优先队列是由堆组成的,所以当我们使用优先队列对Prim进行优化时,就把这种优化叫做堆优化. 它的算法核心思想就是每次向后找边,每个pair存的都是下一个点,以及边权.我们对于已经走过的点就避开,这样就 ...