题目:

Description

小呆开始研究集合论了,他提出了关于一个数集四个问题:
1.子集的异或和的算术和。
2.子集的异或和的异或和。
3.子集的算术和的算术和。
4.子集的算术和的异或和。
    目前为止,小呆已经解决了前三个问题,还剩下最后一个问题还没有解决,他决定把
这个问题交给你,未来的集训队队员来实现。

Input

第一行,一个整数n。
第二行,n个正整数,表示01,a2….,。

Output

一行,包含一个整数,表示所有子集和的异或和。

Sample Input

2
1 3

Sample Output

6

HINT

【样例解释】

6=1 异或 3 异或 (1+3)

【数据规模与约定】

ai >0,1<n<1000,∑ai≤2000000。

另外,不保证集合中的数满足互异性,即有可能出现Ai= Aj且i不等于J

Source:

题解:

按照正常思路是维护一个dp[i],表示和为i的组合有多少个,然后如果dp[i]%2==1则ans^i就可以了··然而复杂度为sum*n,果断T

考虑用一个布尔数组表示dp[i],dp[i]为1表示和为i的组合的数量为奇数,0为偶数

然后每输入一个数x,可以用dp[i]更新dp[i+x],即dp[i+x]=(dp[i+x]+dp[i])%2,既然我们用的是布尔数组,可以利用位运算+bitset,来一次性更新所有的i而不用一一枚举sum,即dp=dp^(dp<<x).

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
#include<bitset>
using namespace std;
const int N=2e6+;
bitset<N>dp;
int ans=,a,tot,n;
int main()
{
//freopen("a.in","r",stdin);
scanf("%d",&n);
dp[]=;
for(int i=;i<=n;i++)
{
scanf("%d",&a);
tot+=a;dp^=(dp<<a);
}
for(int i=;i<=tot;i++)
if(dp[i]) ans^=i;
cout<<ans<<endl;
return ;
}

算法复习——bitset(bzoj3687简单题)的更多相关文章

  1. BZOJ3687 简单题 【bitset】

    BZOJ3687 简单题 Description 小呆开始研究集合论了,他提出了关于一个数集四个问题: 1.子集的异或和的算术和. 2.子集的异或和的异或和. 3.子集的算术和的算术和. 4.子集的算 ...

  2. bzoj3687简单题*

    bzoj3687简单题 题意: 给个集合,求所有子集的元素和的异或和.集合元素个数≤1000,整个集合的元素和≤2000000 题解: 用bitset维护每个子集元素和的个数是奇数还是偶数.每次读入一 ...

  3. [Bzoj3687]简单题(bitset)

    3687: 简单题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1150  Solved: 565[Submit][Status][Discuss] ...

  4. bzoj3687简单题(dp+bitset优化)

    3687: 简单题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 861  Solved: 399[Submit][Status][Discuss] ...

  5. BZOJ3687: 简单题(dp+bitset)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1138  Solved: 556[Submit][Status][Discuss] Descripti ...

  6. BZOJ3687: 简单题

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3687 小呆开始研究集合论了,他提出了关于一个数集四个问题: 1.子集的异或和的算术和. 2.子 ...

  7. 「bzoj3687: 简单题」

    题目 发现需要一个\(O(n\sum a_i )\)的做法 于是可以直接做一个背包,\(dp[i]\)表示和为\(i\)的子集是否有奇数种 \(bitset\)优化一下就好了 #include< ...

  8. 【BZOJ3687】简单题 背包+bitset

    [BZOJ3687]简单题 Description 小呆开始研究集合论了,他提出了关于一个数集四个问题:1.子集的异或和的算术和.2.子集的异或和的异或和.3.子集的算术和的算术和.4.子集的算术和的 ...

  9. BZOJ 3687: 简单题 bitset

    3687: 简单题 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 小呆开始研究集合论了,他 ...

随机推荐

  1. Spring下读取properties文件

    由于在spring的xml文件中配置了 <bean id="validator" class="org.springframework.validation.bea ...

  2. 为 Azure 应用服务配置连续部署工作流

    本快速入门介绍了如何将应用服务 GitHub 集成以实现连续部署工作流.在本教程中完成的所有操作均符合1元试用条件. 本快速入门介绍了如何将应用服务 GitHub 集成以实现连续部署工作流.在本教程中 ...

  3. Java代理设计模式(Proxy)的四种具体实现:静态代理和动态代理

    面试问题:Java里的代理设计模式(Proxy Design Pattern)一共有几种实现方式?这个题目很像孔乙己问"茴香豆的茴字有哪几种写法?" 所谓代理模式,是指客户端(Cl ...

  4. 在Ubuntu16.04安装YouCompleteMe

    作为从事了4年多嵌入式Linux工作的软件工程师,最近决定完全在ubuntu上工作,使用vim进行代码的阅读和编辑,然后尝试去安装vim相关的各种插件.从来没用过代码补全的我,在网上找到了插件omni ...

  5. vue 数组更新 this.$set(this.dataList, data.index, data.data)

    vue 数组更新 this.$set(this.dataList, data.index, data.data) https://www.cnblogs.com/huangenai/p/9836811 ...

  6. 两个input标签之间间隙问题的解决

    <input type="text"> <input type="button" value="搜索"> 代码显示效 ...

  7. tomcat BIO 、NIO 、AIO

    11.11活动当天,服务器负载过大,导致部分页面出现了不可访问的状态.那后来主管就要求调优了,下面是tomcat bio.nio.apr模式以及后来自己测试的一些性能结果. 原理方面的资料都是从网上找 ...

  8. PAT (Basic Level) Practise (中文)-1032. 挖掘机技术哪家强(20)

    PAT (Basic Level) Practise (中文)-1032. 挖掘机技术哪家强(20) http://www.patest.cn/contests/pat-b-practise/1032 ...

  9. bootstrap下拉菜单(Dropdowns)

    本章将重点讲解bootstrap下拉菜单(Dropdowns),下拉菜单是可切换的,是以列表格式显示链接的上下文菜单. <!DOCTYPE html><html><hea ...

  10. Bootstrap历练实例:表单控件状态(禁用)

    禁用的输入框 input 如果您想要禁用一个输入框 input,只需要简单地添加 disabled 属性,这不仅会禁用输入框,还会改变输入框的样式以及当鼠标的指针悬停在元素上时鼠标指针的样式. < ...