题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1250

看了半天...

把第一问想成逆序对的话似乎很容易想了,新加入一个数,可以往前挪动,增加的逆序对数就是它后面那些数的个数;

所以 f[i][j] = ∑(k = max( 0 , j - i + 1)) f[i-1][k],用前缀和即可;

第二问正好用第一类斯特林数;

第一类斯特林数 str[i][j] 表示把 i 个数分成 j 个环,环有顺序的方案数,str[i][j] = str[i-1][j-1] (自成一环) + ( i - 1 ) * str[i-1][j] (跟到某个后面)

对应到这道题,原来每个数自己是一个环,表示它就在自己的位置上;

一个有顺序的环,按一个顺序往过数,一个数到下一个数相互交换,就对应了一种交换;

str[i][j] 中,i - j 个数与别的环合并,也就是发生了一次交换,所以答案就是 ∑(n - k <= i <= n ) str[n][i]

注意不要 MLE ...

用滚动数组求斯特林数得注意一点,初值 str[0][0] 不要赋成1,然后后面 i == j 时也求出来即可,感性理解一下的话~

这题...好像也不难啊。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const maxn=,mod=;
int n,m;
ll f[][maxn],s[][maxn],str[][maxn],ans1,ans2;
void init()
{
// for(int i=0;i<=1;i++)str[i][i]=1;
str[][]=;//滚动数组!让初始化符合意义
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)//因为滚动所以 str[i][i]也在这里求
{
int p=(i&),q=!p;
str[p][j]=(str[q][j-]+(i-)*str[q][j]%mod)%mod;
}
}
int main()
{
scanf("%d%d",&n,&m);
init();
for(int i=;i<=;i++)
{
f[i][]=,s[i][]=;
for(int j=;j<=m;j++)s[i][j]+=s[i][j-];
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
int p=(i&),q=!p;
if(j-i+<=)f[p][j]=s[q][j];
else f[p][j]=(s[q][j]-s[q][j-i]+mod)%mod;
if(j)s[p][j]=(s[p][j-]+f[p][j])%mod;
else s[p][j]=f[p][j];
}
int tmp=m;
while(tmp>=)ans1=(ans1+f[n&][tmp])%mod,tmp-=;
for(int i=n-m;i<=n;i++)ans2=(ans2+str[n&][i])%mod;
printf("%lld %lld\n",ans1,ans2);
return ;
}

51Nod 1250 排列与交换 —— DP的更多相关文章

  1. 51nod 1250 排列与交换——dp

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1250 仔细思考dp. 第一问,考虑已知 i-1 个数有多少种方案. ...

  2. 51Nod 1250 排列与交换

    Description 统计 \(1...n\) 的排列,恰好进行 \(k\) 次相邻交换和至多进行 \(k\) 次交换生成的不同的序列个数. Sol DP. 好妙的题啊... 首先看第一个问题. 对 ...

  3. [luoguP2606] [ZJOI2010]排列计数(DP)

    传送门 如果能够根据题意看出这是一个堆的话,那么就有些思路了.. 首先堆顶必须是最小元素,然后左右儿子可以预处理出来都有多少个数, 把剩余的数任意分配给两个儿子,用排列组合即可 dp(now) = d ...

  4. php实现字符串的排列(交换)(递归考虑所有情况)

    php实现字符串的排列(交换)(递归考虑所有情况) 一.总结 交换: 当有abc的时候,分别拿第一位和其它位交换,第一位固定,余下的位做递归,这样有考虑到所有情况,因为第一位只可能是所有的字母,那第一 ...

  5. 51nod 1020 逆序排列 递推DP

    1020 逆序排列  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么 ...

  6. 51nod 1843 排列合并机(DP+组合)

    题解链接 不过求ggg不用O(n2)DPO(n^2)DPO(n2)DP,g[n]g[n]g[n]直接就是卡特兰数的第n−1n-1n−1项.即: g[n]=(2(n−1)n−1)−(2(n−1)n−2) ...

  7. 51nod 1043 幸运号码(数位dp)

    题目链接:51nod 1043 幸运号码 题解:dp[i][j]表示 i 个数和为 j 的总数(包含0开头情况) dp[i][j] = dp[i-1][j-k] i & 1 :这里用滚动数组节 ...

  8. 51nod 1092 回文字符串 (dp)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1092 这个题是poj-3280的简化版,这里只可以增加字符,设 dp[i ...

  9. 51Nod 1201 整数划分 (经典dp)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1201 题意不多说了. dp[i][j]表示i这个数划分成j个数 ...

随机推荐

  1. 简单的jsonp实现跨域原理

    什么原因使jsonp诞生?  传说,浏览器有一个很重要的安全限制,叫做"同源策略".同源是指,域名,协议,端口相同.举个例子,用一个浏览器分别打开了百度和谷歌页面,百度页面在执行脚 ...

  2. TestNG超时测试

    用@Test(timeOut = XXX) 指定超时时间,单位是毫秒 package com.janson; import org.testng.annotations.Test; public cl ...

  3. buf.readFloatBE()

    buf.readFloatBE(offset[, noAssert]) buf.readFloatLE(offset[, noAssert]) offset {Number} 0 noAssert { ...

  4. jupyter notebook的插件安装及文本格式修改

    jupyter notebook的插件安装及文本格式修改 1.jupyter notebook拓展插件安装 启动jupyter notebook : 打开控制台输入命令 jupyter noteboo ...

  5. python 基础知识及运算符

    可变类型:列表.字典 不可变类型:整形.字符串.元组 标示符: 1.字母数字和下划线组成 2.不能以数字开头 3.区分大小写 4.不能以保留字命名 变量: 1.用描述性的单词命名变量,不要用保留字.汉 ...

  6. [bzoj1044][HAOI2008][木棍分割] (二分+贪心+dp+队列优化)

    Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长 ...

  7. Python异常捕捉的一个小问题

    问题: names = ['taotao','songwenjing','liu','li']I = iter(names)while True: try: s = next(I) except Ex ...

  8. saltstack(二) master、minion常用配置选项

    master常用配置选项: interface: 指定bind的地址(默认0.) publish_port:指定发布端口(默认4505) ret_port: 指定结果返回端口,与minion配置文件的 ...

  9. 在 Oculus和 Gear VR上开发跨平台的 VR应用

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/51433994 作者:car ...

  10. JS权威指南笔记1

    1.JavaScript数据类型可分为两种:原始类型和对象类型.原始类型下又包括数字.字符串和布尔值,以及null和undefined这两个特殊的:对象是属性的集合,且每个属性都有自己的"名 ...