[bzoj3274]Circle
https://www.zybuluo.com/ysner/note/1243396
题面
有\(n\)个排成一圈的格子,并且已知正整数\(k\)和\(m\),你需要往每个格子中填入一个大于等于\(k\)的正整数。将相邻的一些格子(或一个单独的格子)中的数加起来,可以产生一个新的数。假设使用格子中的数可以产生出\(m,m+1,…i\),但不能产生\(i+1\)。求出往格子中填入哪些数,可以使得\(i\)尽量大。
对于同一个环,输出字典序最小的方案。
- \(30pts\ n\leq5\)
- \(100pts\ n\leq6,m,k\leq20\)
解析
看这部分分分布就知道是暴搜+剪枝。
\(30pts\)算法
卡着复杂度枚举每个数,再枚举两端点找出产生的所有数即可。(好像是\(k~k+18\))
至于怎么去重,我傻逼地打了哈希,只能过样例。
实际上保证后面每位数不比第一位小就可以了啊。
\(100pts\)算法
可以打表发现,填入的数最大为\(k+15\)。
于是继续暴枚就能过了。
复杂度\(O(16^6n^2)=O(6*10^8)\),然而由于前面枚举的限制,复杂度不满(除以\(6\))。
附上题解剪枝:
假设当前已经确定前\(k\)个格子中的数。将前\(k\)个格子不能产生的大于等于\(m\)的数从小到大排序,设为\(a_1,a_2,...\)。假设由后面\(n-k\)个格子最多可以再产生\(x\)个数,则第\(k+1\)个数不能超过 \(a[x]\)。
加上这个剪枝似乎快\(3\)倍,然而懒得打。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#define re register
#define il inline
#define ll long long
#define q 15
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int mod=1e9+7,N=20,M=1e5+100;
int n,m,k,a[N],ans[M][N],tot,p[N],tong[M],anss,top;
ll jc[70];
map<ll,bool>vis;
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il int check()
{
fp(i,n+1,n+n) a[i]=a[i-n];
fp(i,1,n+n) p[i]=p[i-1]+a[i];
fp(i,1,p[n+n]) tong[i]=0;
fp(l,1,n)
fp(r,l,l+n-1)
tong[p[r]-p[l-1]]=1;
re int x=m;
while(tong[x]) ++x;--x;
if(x>anss) {anss=x;tot=0;return 1;}
return (x==anss);
}
int main()
{
freopen("circle.in","r",stdin);
freopen("circle.out","w",stdout);
jc[0]=1;fp(i,1,60) jc[i]=jc[i-1]*2;
n=gi();m=gi();k=gi();
if(n==5)
for(a[1]=k;a[1]<=k+q;a[1]++)
for(a[2]=a[1];a[2]<=k+q;a[2]++)
for(a[3]=a[1];a[3]<=k+q;a[3]++)
for(a[4]=a[1];a[4]<=k+q;a[4]++)
for(a[5]=a[1];a[5]<=k+q;a[5]++)
if(check()) ans[++tot][1]=a[1],ans[tot][2]=a[2],ans[tot][3]=a[3],ans[tot][4]=a[4],ans[tot][5]=a[5];
if(n==6)
for(a[1]=k;a[1]<=k+q;a[1]++)
for(a[2]=a[1];a[2]<=k+q;a[2]++)
for(a[3]=a[1];a[3]<=k+q;a[3]++)
for(a[4]=a[1];a[4]<=k+q;a[4]++)
for(a[5]=a[1];a[5]<=k+q;a[5]++)
for(a[6]=a[1];a[6]<=k+q;a[6]++)
if(check()) ans[++tot][1]=a[1],ans[tot][2]=a[2],ans[tot][3]=a[3],ans[tot][4]=a[4],ans[tot][5]=a[5],ans[tot][6]=a[6];
printf("%d\n",anss);
fp(i,1,tot)
{
fp(j,1,n) printf("%d ",ans[i][j]);puts("");
}
fclose(stdin);
fclose(stdout);
return 0;
}
[bzoj3274]Circle的更多相关文章
- [翻译svg教程]svg中的circle元素
svg中的<circle> 元素,是用来绘制圆形的,例如 <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink= ...
- 设计一个程序,程序中有三个类,Triangle,Lader,Circle。
//此程序写出三个类,triangle,lader,circle:其中triangle类具有类型为double的a,b,c边以及周长,面积属性, //具有周长,面积以及修改三边的功能,还有判断能否构成 ...
- c++作业:Circle
Circle Github链接
- Modified Least Square Method and Ransan Method to Fit Circle from Data
In OpenCv, it only provide the function fitEllipse to fit Ellipse, but doesn't provide function to f ...
- [javascript svg fill stroke stroke-width circle 属性讲解] svg fill stroke stroke-width circle 属性 绘制圆形及引入方式讲解
<!DOCTYPE html> <html lang='zh-cn'> <head> <title>Insert you title</title ...
- (1)编写一个接口ShapePara,要求: 接口中的方法: int getArea():获得图形的面积。int getCircumference():获得图形的周长 (2)编写一个圆类Circle,要求:圆类Circle实现接口ShapePara。 该类包含有成员变量: radius:public 修饰的double类型radius,表示圆的半径。 x:private修饰的double型变量x,
package com.hanqi.test; //创建接口 public interface ShapePara { //获取面积的方法 double getArea(); //获取周长的方法 do ...
- 东大oj-1591 Circle of friends
题目描述 Nowadays, "Circle of Friends" is a very popular social networking platform in WeChat. ...
- svg学习(四)circle
<circle> 标签 < <?xml version="1.0" standalone="no"?> <!DOCTYPE ...
- 后缀数组 --- WOj 1564 Problem 1564 - A - Circle
Problem 1564 - A - Circle Problem's Link: http://acm.whu.edu.cn/land/problem/detail?problem_id=156 ...
随机推荐
- ThinkPHP---TP功能类之邮件
[一]概论 (1)简介: 这里说的邮件不是平时说的email邮件(邮件地址带有@符号的),而是指的一般论坛网站的站内信息,也叫私信或者pm(private message私信) [二]站内信案例 (1 ...
- Coin Toss(uva 10328,动态规划递推,限制条件,至少转至多,高精度)
有n张牌,求出至少有k张牌连续是正面的排列的种数.(1=<k<=n<=100) Toss is an important part of any event. When everyt ...
- 数列分块入门1-9 By hzwer
声明 持续更新,因为博主也是正在学习分块的知识,我很菜的,菜的抠$jio$ 写在前面 分块是个很暴力的算法,但却比暴力优秀的多,分块算法的时间复杂度一般是根号的,他的主要思想是将一个长度是$n$的数列 ...
- Educational Codeforces Round 57 (Rated for Div. 2) 前三个题补题
感慨 最终就做出来一个题,第二题差一点公式想错了,又是一波掉分,不过我相信我一定能爬上去的 A Find Divisible(思维) 上来就T了,后来直接想到了题解的O(1)解法,直接输出左边界和左边 ...
- fiddler培训
fiddler 在客户端和服务器中间做一个代理 ,只能截获http或HTTPS的请求 代理地址127.0.0.1 端口8888 反向代理,正向代理 浏览器上设置代理地址和端口 左边是session ...
- php正则表达式匹配html标签
用php正则表达式找出div标签,div允许多层嵌套,比如在以下文本中找出class为quizPutTag的div? <html> <head></head> &l ...
- (二)Python脚本开头两行的:#!/usr/bin/python和# -*- coding: utf-8 -*-的作用
#!usr/bin/env python # -*- coding: utf-8 -*- def test(): print('hello, world') if __name__ == " ...
- LVS集群的三种工作模式
LVS的三种工作模式: 1)VS/NAT模式(Network address translation) 2)VS/TUN模式(tunneling) 3)DR模式(Direct routing) 1.N ...
- 带你全面分析嵌入式linux系统启动过程中uboot的作用
资料链接:http://mp.weixin.qq.com/s/rYVchD-xy7Bdkc1O3fW2Wg
- go 语言学习指南(一)
参考资料: http://www.runoob.com/go/go-tutorial.html