https://www.zybuluo.com/ysner/note/1243396

题面

有\(n\)个排成一圈的格子,并且已知正整数\(k\)和\(m\),你需要往每个格子中填入一个大于等于\(k\)的正整数。将相邻的一些格子(或一个单独的格子)中的数加起来,可以产生一个新的数。假设使用格子中的数可以产生出\(m,m+1,…i\),但不能产生\(i+1\)。求出往格子中填入哪些数,可以使得\(i\)尽量大。

对于同一个环,输出字典序最小的方案。

  • \(30pts\ n\leq5\)
  • \(100pts\ n\leq6,m,k\leq20\)

解析

看这部分分分布就知道是暴搜+剪枝。

\(30pts\)算法

卡着复杂度枚举每个数,再枚举两端点找出产生的所有数即可。(好像是\(k~k+18\))

至于怎么去重,我傻逼地打了哈希,只能过样例。

实际上保证后面每位数不比第一位小就可以了啊。

\(100pts\)算法

可以打表发现,填入的数最大为\(k+15\)。

于是继续暴枚就能过了。

复杂度\(O(16^6n^2)=O(6*10^8)\),然而由于前面枚举的限制,复杂度不满(除以\(6\))。

附上题解剪枝:

假设当前已经确定前\(k\)个格子中的数。将前\(k\)个格子不能产生的大于等于\(m\)的数从小到大排序,设为\(a_1,a_2,...\)。假设由后面\(n-k\)个格子最多可以再产生\(x\)个数,则第\(k+1\)个数不能超过 \(a[x]\)。

加上这个剪枝似乎快\(3\)倍,然而懒得打。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#define re register
#define il inline
#define ll long long
#define q 15
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int mod=1e9+7,N=20,M=1e5+100;
int n,m,k,a[N],ans[M][N],tot,p[N],tong[M],anss,top;
ll jc[70];
map<ll,bool>vis;
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il int check()
{
fp(i,n+1,n+n) a[i]=a[i-n];
fp(i,1,n+n) p[i]=p[i-1]+a[i];
fp(i,1,p[n+n]) tong[i]=0;
fp(l,1,n)
fp(r,l,l+n-1)
tong[p[r]-p[l-1]]=1;
re int x=m;
while(tong[x]) ++x;--x;
if(x>anss) {anss=x;tot=0;return 1;}
return (x==anss);
}
int main()
{
freopen("circle.in","r",stdin);
freopen("circle.out","w",stdout);
jc[0]=1;fp(i,1,60) jc[i]=jc[i-1]*2;
n=gi();m=gi();k=gi();
if(n==5)
for(a[1]=k;a[1]<=k+q;a[1]++)
for(a[2]=a[1];a[2]<=k+q;a[2]++)
for(a[3]=a[1];a[3]<=k+q;a[3]++)
for(a[4]=a[1];a[4]<=k+q;a[4]++)
for(a[5]=a[1];a[5]<=k+q;a[5]++)
if(check()) ans[++tot][1]=a[1],ans[tot][2]=a[2],ans[tot][3]=a[3],ans[tot][4]=a[4],ans[tot][5]=a[5];
if(n==6)
for(a[1]=k;a[1]<=k+q;a[1]++)
for(a[2]=a[1];a[2]<=k+q;a[2]++)
for(a[3]=a[1];a[3]<=k+q;a[3]++)
for(a[4]=a[1];a[4]<=k+q;a[4]++)
for(a[5]=a[1];a[5]<=k+q;a[5]++)
for(a[6]=a[1];a[6]<=k+q;a[6]++)
if(check()) ans[++tot][1]=a[1],ans[tot][2]=a[2],ans[tot][3]=a[3],ans[tot][4]=a[4],ans[tot][5]=a[5],ans[tot][6]=a[6];
printf("%d\n",anss);
fp(i,1,tot)
{
fp(j,1,n) printf("%d ",ans[i][j]);puts("");
}
fclose(stdin);
fclose(stdout);
return 0;
}

[bzoj3274]Circle的更多相关文章

  1. [翻译svg教程]svg中的circle元素

    svg中的<circle> 元素,是用来绘制圆形的,例如 <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink= ...

  2. 设计一个程序,程序中有三个类,Triangle,Lader,Circle。

    //此程序写出三个类,triangle,lader,circle:其中triangle类具有类型为double的a,b,c边以及周长,面积属性, //具有周长,面积以及修改三边的功能,还有判断能否构成 ...

  3. c++作业:Circle

    Circle Github链接

  4. Modified Least Square Method and Ransan Method to Fit Circle from Data

    In OpenCv, it only provide the function fitEllipse to fit Ellipse, but doesn't provide function to f ...

  5. [javascript svg fill stroke stroke-width circle 属性讲解] svg fill stroke stroke-width circle 属性 绘制圆形及引入方式讲解

    <!DOCTYPE html> <html lang='zh-cn'> <head> <title>Insert you title</title ...

  6. (1)编写一个接口ShapePara,要求: 接口中的方法: int getArea():获得图形的面积。int getCircumference():获得图形的周长 (2)编写一个圆类Circle,要求:圆类Circle实现接口ShapePara。 该类包含有成员变量: radius:public 修饰的double类型radius,表示圆的半径。 x:private修饰的double型变量x,

    package com.hanqi.test; //创建接口 public interface ShapePara { //获取面积的方法 double getArea(); //获取周长的方法 do ...

  7. 东大oj-1591 Circle of friends

    题目描述 Nowadays, "Circle of Friends" is a very popular social networking platform in WeChat. ...

  8. svg学习(四)circle

    <circle> 标签 < <?xml version="1.0" standalone="no"?> <!DOCTYPE ...

  9. 后缀数组 --- WOj 1564 Problem 1564 - A - Circle

    Problem 1564 - A - Circle Problem's Link:   http://acm.whu.edu.cn/land/problem/detail?problem_id=156 ...

随机推荐

  1. ThinkPHP---TP功能类之邮件

    [一]概论 (1)简介: 这里说的邮件不是平时说的email邮件(邮件地址带有@符号的),而是指的一般论坛网站的站内信息,也叫私信或者pm(private message私信) [二]站内信案例 (1 ...

  2. Coin Toss(uva 10328,动态规划递推,限制条件,至少转至多,高精度)

    有n张牌,求出至少有k张牌连续是正面的排列的种数.(1=<k<=n<=100) Toss is an important part of any event. When everyt ...

  3. 数列分块入门1-9 By hzwer

    声明 持续更新,因为博主也是正在学习分块的知识,我很菜的,菜的抠$jio$ 写在前面 分块是个很暴力的算法,但却比暴力优秀的多,分块算法的时间复杂度一般是根号的,他的主要思想是将一个长度是$n$的数列 ...

  4. Educational Codeforces Round 57 (Rated for Div. 2) 前三个题补题

    感慨 最终就做出来一个题,第二题差一点公式想错了,又是一波掉分,不过我相信我一定能爬上去的 A Find Divisible(思维) 上来就T了,后来直接想到了题解的O(1)解法,直接输出左边界和左边 ...

  5. fiddler培训

    fiddler  在客户端和服务器中间做一个代理 ,只能截获http或HTTPS的请求 代理地址127.0.0.1  端口8888 反向代理,正向代理 浏览器上设置代理地址和端口 左边是session ...

  6. php正则表达式匹配html标签

    用php正则表达式找出div标签,div允许多层嵌套,比如在以下文本中找出class为quizPutTag的div? <html> <head></head> &l ...

  7. (二)Python脚本开头两行的:#!/usr/bin/python和# -*- coding: utf-8 -*-的作用

    #!usr/bin/env python # -*- coding: utf-8 -*- def test(): print('hello, world') if __name__ == " ...

  8. LVS集群的三种工作模式

    LVS的三种工作模式: 1)VS/NAT模式(Network address translation) 2)VS/TUN模式(tunneling) 3)DR模式(Direct routing) 1.N ...

  9. 带你全面分析嵌入式linux系统启动过程中uboot的作用

    资料链接:http://mp.weixin.qq.com/s/rYVchD-xy7Bdkc1O3fW2Wg

  10. go 语言学习指南(一)

    参考资料: http://www.runoob.com/go/go-tutorial.html