题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009

字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我...

首先要设计一个不太好想的状态:f[i][j]表示大串上到第 i 位时有小串前 j 位的后缀,且不包含整个小串的方案数;

也就是如果小串是 12312 , f[5][3] 表示目前大串的情况是 **123... ;

这个状态要从 i 转移到 i+1 ,还需要一个帮助它的数组 a,a[i][j]表示在长度为 i 的后缀后面加一个数字能变成长度为 j 的后缀的方案数;

也就是说,对于 12312,从0到4的 a 数组应该如下:

9 1 0 0 0

8 1 1 0 0

8 1 0 1 0

9 0 0 0 1

8 1 0 0 0

a 数组的定义可以联想到 kmp 算法,事实上它就是通过 kmp 算法的 nxt 数组求得;

于是就可以得到转移方程:f[i][j] = ∑(0<=k<m) f[i-1][k] * a[k][j]

然后发现对于每一步,进行的转移都是相同的;

所以可以用矩阵快速幂来优化,转移矩阵就是 a 数组;

看了好多好多博客才明白...

这篇博客写得很好:https://blog.csdn.net/loi_dqs/article/details/50897662

尤其是代码真的简洁!所以模仿着写了。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int n,m,mod,nxt[],sum;
char s[];
struct Matrix{
int n,m,a[][];
Matrix(int x=,int y=):n(x),m(y) {memset(a,,sizeof a);}
void init()
{
for(int i=;i<n;i++)a[i][i]=;//0 ~ n-1
}
Matrix operator * (const Matrix &y) const
{
Matrix x(n,y.m);
for(int i=;i<n;i++)//从0到n-1
for(int k=;k<m;k++)
for(int j=;j<y.m;j++)
(x.a[i][j]+=(ll)a[i][k]*y.a[k][j]%mod)%=mod;
return x;
}
};
void getnxt()
{
nxt[]=nxt[]=;//第0位有字符,但含义是无匹配
for(int i=;i<m;i++)
{
// int k=i;
int k=nxt[i];
while(s[i]!=s[k]&&k)k=nxt[k];
nxt[i+]=(s[i]==s[k])?k+:;//前一位的nxt冒进一位,对应下面从0开始的字符串匹配
}
}
Matrix pw(Matrix x,int k)
{
Matrix ret(x.n,x.m); ret.init();
for(;k;k>>=,x=x*x)
if(k&)ret=ret*x;
return ret;
}
int main()
{
scanf("%d%d%d%s",&n,&m,&mod,&s);
getnxt();
Matrix f(m,m);
for(int i=;i<m;i++)
for(int j='';j<='';j++)//第i位上填j
{
int k=i;//已经有长度为i的前缀,而k对应字符串上i的后一位
while(k&&s[k]!=j)k=nxt[k];//冒进一位的nxt,表示给i后一位进行匹配
if(s[k]==j)k++;//匹配到了第k位,也就是有了k+1长度的前缀
if(k!=m)f.a[i][k]++;
}
Matrix fn=pw(f,n);
Matrix ans(,m);
ans.a[][]=; ans=ans*fn;
for(int i=;i<m;i++)
(sum+=ans.a[][i])%=mod;
printf("%d",sum);
return ;
}

bzoj1009 [HNOI2008]GT考试——KMP+矩阵快速幂优化DP的更多相关文章

  1. [bzoj1009](HNOI2008)GT考试 (kmp+矩阵快速幂加速递推)

    Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0&l ...

  2. 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...

  3. 2018.10.22 bzoj1009: [HNOI2008]GT考试(kmp+矩阵快速幂优化dp)

    传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的 ...

  4. BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4266  Solved: 2616[Submit][Statu ...

  5. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  6. 2018.10.16 uoj#340. 【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂优化dp)

    传送门 一道不错的矩阵快速幂优化dpdpdp. 设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个 ...

  7. 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)

    Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...

  8. [HNOI2008][bzoj1009] GT考试 [KMP+矩阵快速幂]

    题面 传送门 思路 首先,如果$n$和$m$没有那么大的话,有一个非常显然的dp做法: 设$dp[i][j]$表示长度为i的字符串,最后j个可以匹配模板串前j位的情况数 那么显然,答案就是$\sum_ ...

  9. BZOJ 1009 [HNOI2008]GT考试(矩阵快速幂优化DP+KMP)

    题意: 求长度为n的不含长为m的指定子串的字符串的个数 1s, n<=1e9, m<=50 思路: 长见识了.. 设那个指定子串为s f[i][j]表示长度为i的字符串(其中后j个字符与s ...

随机推荐

  1. 04Oracle Database 登陆

    Oracle Database 登陆 EM Express Login https://localhost:5500/em/login cmd sqlplus SQL/PLUS system/code ...

  2. 用Docker构建MySQL镜像

    构建MySQL镜像 本文目的不仅仅是创建一个MySQL的镜像,而是在其基础上再实现启动过程中自动导入数据及数据库用户的权限设置,并且在新创建出来的容器里自动启动MySQL服务接受外部连接,主要是通过D ...

  3. 扒一扒PROMISE的原理,大家不要怕!

    在前端的日常工作中,回调函数(callback)应该是见怪不怪了,但是当回调函数遇上了异步(async),这就令人发指了.那么异步是什么意思呢,简单地说就是不等你执行完,就先执行下方的代码了. 举个

  4. javaScript--进阶1--数据类型、操作符

    一.JS基础知识背景 1.1 弱类型脚本语言 脚本语言是:弥补编译语言的不足而存在的,作为补充语言,不用编译,解析一行执行一行. 弱类型语言:简单理解定义一个变量,可以有多种数据类型.(var tem ...

  5. ndk编译libpcap 1.7.4

    android完全菜鸟,绝对的第一次接触,想做手机抓包,在网上搜又是NDK 又是JNI 又是JNETPCAP 完全蒙了,让我这种android和java都弄不明白什么关系的人情何以堪! 静下心想一想, ...

  6. Eclipse中使用JRebel实现项目热部署(Maven插件版)

    JRebel实现项目热部署(Maven插件版) 热部署,就是在应用运行过程中不进行重启,可直接进行软件升级. 在开发过程中,热部署就是在项目运行过程中变更代码,无需重启服务器即可使代码生效. tomc ...

  7. 如何通过js在子页面调用父页面元素的click事件

    //获取父页面的某个元素var node = window.parent.document.getElementById("btnReturn");//调用该元素的Click事件 ...

  8. 使用Mybatis进行连表查询、left join---https://blog.csdn.net/jinzhencs/article/details/51980518

    使用Mybatis进行连表查询.left join https://blog.csdn.net/jinzhencs/article/details/51980518

  9. [luoguP2045] 方格取数加强版(最小费用最大流)

    传送门 水题 ——代码 #include <queue> #include <cstdio> #include <cstring> #include <ios ...

  10. HDU——1787 GCD Again

    题意: 在一次acm竞赛之后,你花了一些时间去思考和尝试解决那些未解决的问题吗? 不知道?哦,当你想成为“大牛”的时候,你就必须这样做. 现在你会发现,这个问题是如此熟悉: 两个正整数a和b的最大GC ...