d.用2种砝码,质量分别为a和b,称出质量为d的物品。求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小)。

s.扩展欧几里得求解不定方程。

设ax+by=d.

题意说不定方程一定有解。对于不定整数方程pa+qb=c,若 c mod Gcd(p, q)=0,则该方程存在整数解,否则不存在整数解。

也就是说,d mod gcd(a,b)=0.

a,b,d同时除以gcd(a,b)得到a'x+b'y=d';

用扩展欧几里德求出 a'x+b'y=gcd(a',b')=1的解(x,y),

那么原来这个a'x+b'y=d'的解就是(x*d',y*d')。

然后分两种情况来求就行了(假设物品放右边):

(1)令x是最小正整数,a放左边的最优解;(y<0代表b放右边)

(2)令y是最小正整数,b放左边的最优解;

两者中x+y小的就是结果。

c.

#include<iostream>
#include<stdio.h>
using namespace std; int gcd(int a,int b){
return b?gcd(b,a%b):a;
} int ex_gcd(int a,int b,int &x,int &y){
if(b==){
x=;
y=;
return a;
}
int d=ex_gcd(b,a%b,x,y);
int t=x;
x=y;
y=t-a/b*y;
return d;
} int main(){ int a,b,d; int q;//a,b的最大公约数
int x,y;
int x1,y1;
int x2,y2; while(~scanf("%d%d%d",&a,&b,&d)){
if(a==&&b==&&d==)break; q=gcd(a,b);
//这里 对于不定整数方程pa+qb=c,若 c mod Gcd(p, q)=0,则该方程存在整数解,否则不存在整数解。
//不定方程:ax+by=d
a=a/q;
b=b/q;
d=d/q;//题目一定有解,可以整除 //不定方程:ax+by=d q=ex_gcd(a,b,x,y);//求的是ax+by=gcd(a,b)=1 //令x是最小正整数,a放左边的最优解
x1=x*d;
x1=(x1%b+b)%b;//x变为最小正整数
y1=(d-a*x1)/b;
if(y1<){
y1=-y1;
} //令y是最小正整数,b放左边的最优解
y2=y*d;
y2=(y2%a+a)%a;//y变为最小正整数
x2=(d-b*y2)/a;
if(x2<){
x2=-x2;
} //x+y和最小
if(x1+y1<x2+y2){
printf("%d %d\n",x1,y1);
}
else{
printf("%d %d\n",x2,y2);
} } return ;
}

POJ - 2142 The Balance(扩展欧几里得求解不定方程)的更多相关文章

  1. POJ 2142 - The Balance [ 扩展欧几里得 ]

    题意: 给定 a b n找到满足ax+by=n 的x,y 令|x|+|y|最小(等时令a|x|+b|y|最小) 分析: 算法一定是扩展欧几里得. 最小的时候一定是 x 是最小正值 或者 y 是最小正值 ...

  2. POJ.2142 The Balance (拓展欧几里得)

    POJ.2142 The Balance (拓展欧几里得) 题意分析 现有2种质量为a克与b克的砝码,求最少 分别用多少个(同时总质量也最小)砝码,使得能称出c克的物品. 设两种砝码分别有x个与y个, ...

  3. POJ 2142:The Balance_扩展欧几里得(多组解)

    先做出两个函数的图像,然后求|x|+|y|的最小值.|x|+|y|=|x0+b/d *t |+|y0-a/d *t| 这个关于t的函数的最小值应该在t零点附近(在斜率大的那条折线的零点附近,可以观察出 ...

  4. exgcd扩展欧几里得求解的个数

    知识储备 扩展欧几里得定理 欧几里得定理 (未掌握的话请移步[扩展欧几里得]) 正题 设存在ax+by=gcd(a,b),求x,y.我们已经知道了用扩欧求解的方法是递归,终止条件是x==1,y==0: ...

  5. 【lydsy1407】拓展欧几里得求解不定方程+同余方程

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1407 题意: 有n个野人,野人各自住在第c[i]个山洞中(山洞成环状),每年向前走p[i] ...

  6. POJ 2115 C Looooops(扩展欧几里得)

    辗转相除法(欧几里得算法) 时间复杂度:在O(logmax(a, b))以内 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a ...

  7. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  8. POJ 2115 C Looooops扩展欧几里得

    题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...

  9. 扩展欧几里得求解同余方程(poj 1061)

    设方程 ax + by = c , 若 gcd(a,b) 是 c的因子(记作gcd(a,b)|c)则方程有解,反之无解. 其中x0,y0是方程的一组特解 , d = gcd(a,b), poj1061 ...

随机推荐

  1. AttributeError: module 're' has no attribute 'search'

    命名py脚本时,不要与python预留字,模块名等相同,即Python文件名不要使用Python系统库的名字,就是因为使用了Python系统库的名字,所以在编译的时候才会产生.pyc文件.正常的Pyt ...

  2. Java常用几种加密算法

    对称加密算法是应用较早的加密算法,技术成熟.在对称加密算法中,数据发信方将明文(原始数据)和加密密钥(mi yue)一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去.收信方收到密文后,若想解 ...

  3. 分布式架构和微服务CI/CD的范本技术解读

    随笔分类 - 分布式架构--http://www.cnblogs.com/hujihon/category/858846.html (ZooKeeper.activemq.redis.kafka)的分 ...

  4. Go语言并发之美

    简介           多核处理器越来越普及,那有没有一种简单的办法,能够让我们写的软件释放多核的威力?答案是:Yes.随着Golang, Erlang, Scale等为并发设计的程序语言的兴起,新 ...

  5. POJ 3518 Prime Gap(素数)

    POJ 3518 Prime Gap(素数) id=3518">http://poj.org/problem? id=3518 题意: 给你一个数.假设该数是素数就输出0. 否则输出比 ...

  6. Java多线程面试题归纳

    1.多线程有哪几种实现方法?举个样例说明下线程的同步. (1)Java多线程有两种实现方式:继承Thread类和实现Runnable接口,Thread就是实现了Runnable接口. 两个最简单的线程 ...

  7. [网页游戏开发]进一步了解Morn UI及工作流

    Morn UI工作流 Morn Builder不仅仅是对Flash IDE的改进,传统的开发协作是以fla为基础,由于fla是二进制文件,在以svn等版本控制软件协作下,合并过程中会出现各种各样的问题 ...

  8. 1449: [JSOI2009]球队收益

    1449: [JSOI2009]球队收益 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 757  Solved: 437[Submit][Status][ ...

  9. JavaScript重点记忆

    String的常用方法 indexOf() 返回字符串中检索指定字符第一次出现的位置 lastIndexOf() 返回字符串中检索指定字符最后一次出现的位置 match() 找到一个或多个正则表达式的 ...

  10. 【bzoj4554】[Tjoi2016&Heoi2016]游戏

    现在问题有硬石头和软石头的限制 所以要对地图进行预处理 分行做,把有#隔开的*(x)形成联通块的存储下来. 分列作,把有#隔开的*(x)形成联通块的存储下来. 求出所有的行联通个数和列联通个数 作为二 ...