BZOJ_2424_[HAOI2010]订货_最小费用最大流

Description

某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付存贮费用m,假定第一月月初的库存量为零,第n月月底的库存量也为零,问如何安排这n个月订购计划,才能使成本最低?每月月初订购,订购后产品立即到货,进库并供应市场,于当月被售掉则不必付存贮费。假设仓库容量为S。

Input

第1行:n, m, S (0<=n<=50, 0<=m<=10, 0<=S<=10000)
第2行:U1 , U2 , ... , Ui , ... , Un (0<=Ui<=10000)
第3行:d1 , d2 , ..., di , ... , dn (0<=di<=100)

Output

只有1行,一个整数,代表最低成本

Sample Input

3 1 1000
2 4 8
1 2 4

Sample Output

34

题目描述不清晰,其实可以在某天先卖一点在买的。
也就是说只要求剩下的不超过仓库容量即可。
于是S连第i天(inf,di),第i天连i+1天(inf,m),第i天连T(ui,0)。
跑最小费用最大流即可。
 
代码:
#include <cstdio>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 70
#define M 400050
#define S (n+1)
#define T (n+2)
#define inf 1<<30
int head[N],to[M],nxt[M],val[M],flow[M],cnt=1,n,m,C;
int U[N],D[N],dis[N],path[N],inq[N],Q[N],l,r;
void add(int u,int v,int f,int c) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; flow[cnt]=f; val[cnt]=c;
to[++cnt]=u; nxt[cnt]=head[v]; head[v]=cnt; flow[cnt]=0; val[cnt]=-c;
}
bool spfa() {
memset(dis,0x3f,sizeof(dis));
memset(path,0,sizeof(path));
l=r=0; dis[S]=0; Q[r++]=S;
while(l!=r) {
int x=Q[l++],i; inq[x]=0; if(l==T) l=0;
for(i=head[x];i;i=nxt[i]) {
if(dis[to[i]]>dis[x]+val[i]&&flow[i]) {
dis[to[i]]=dis[x]+val[i];
path[to[i]]=i^1;
if(!inq[to[i]]) {
inq[to[i]]=1; Q[r++]=to[i]; if(r==T) r=0;
}
}
}
}
return path[T];
}
void mcmf() {
int ans=0,i;
while(spfa()) {
int nf=1<<30;
for(i=T;i!=S;i=to[path[i]]) {
nf=min(nf,flow[path[i]^1]);
}
for(i=T;i!=S;i=to[path[i]]) {
ans+=nf*val[path[i]^1];
flow[path[i]]+=nf;
flow[path[i]^1]-=nf;
}
}
printf("%d\n",ans);
}
int main() {
scanf("%d%d%d",&n,&m,&C);
int i;
for(i=1;i<=n;i++) scanf("%d",&U[i]);
for(i=1;i<=n;i++) scanf("%d",&D[i]);
for(i=1;i<=n;i++) {
add(S,i,inf,D[i]); add(i,T,U[i],0);
if(i!=n) add(i,i+1,C,m);
}
mcmf();
}

BZOJ_2424_[HAOI2010]订货_最小费用最大流的更多相关文章

  1. BZOJ_3280_小R的烦恼_最小费用最大流

    BZOJ_3280_小R的烦恼_最小费用最大流 Description 小R最近遇上了大麻烦,他的程序设计挂科了.于是他只好找程设老师求情.善良的程设老师答应不挂他,但是要 求小R帮助他一起解决一个难 ...

  2. BZOJ_3171_[Tjoi2013]循环格_最小费用最大流

    BZOJ_3171_[Tjoi2013]循环格_最小费用最大流 Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为 ...

  3. BZOJ 2424: [HAOI2010]订货(最小费用最大流)

    最小费用最大流..乱搞即可 ------------------------------------------------------------------------------ #includ ...

  4. bzoj1927最小费用最大流

    其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→   =_=你TM逗我 刚要删突然感觉dinic的模 ...

  5. hdoj 1533 Going Home 【最小费用最大流】【KM入门题】

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  6. [模板]网络最大流 & 最小费用最大流

    我的作业部落有学习资料 可学的知识点 Dinic 模板 #define rg register #define _ 10001 #define INF 2147483647 #define min(x ...

  7. [板子]最小费用最大流(Dijkstra增广)

    最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...

  8. ACM/ICPC 之 卡卡的矩阵旅行-最小费用最大流(可做模板)(POJ3422)

    将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0 ...

  9. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

随机推荐

  1. [Python3网络爬虫开发实战] 1.9.1-Docker的安装

    Docker是一种容器技术,可以将应用和环境等进行打包,形成一个独立的.类似于iOS的App形式的“应用”.这个应用可以直接被分发到任意一个支持Docker的环境中,通过简单的命令即可启动运行.Doc ...

  2. Vue页面骨架屏(二)

    实现思路 参考原文中在构建时使用 Vue 预渲染骨架屏一节介绍的思路,我将骨架屏也看成路由组件,在构建时使用 Vue 预渲染功能,将骨架屏组件的渲染结果 HTML 片段插入 HTML 页面模版的挂载点 ...

  3. mysql 判断索引是否存在,存在则删除再创建索引(分表) 存储过程

    1.分表5数据量大,执行所有分表修改,不包括5 CREATE PROCEDURE deleteIndex()BEGINDECLARE corpId CHAR (16);DECLARE flag INT ...

  4. poj3440--Coin Toss(几何上的概率)

    Coin Toss Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3946   Accepted: 1076 Descrip ...

  5. bzoj3304[Shoi2005]带限制的最长公共子序列 DP

    题意:给出三个序列,求出前两个的公共子序列,且包含第三个序列,要求长度最长. 这道题目怎么做呢,f[i][j]表示a串1-i,b串1-j的最长,g[i][j]表示a串i-n,b串j-m最长, 那么只需 ...

  6. [K/3Cloud] 关于单据转换的问题

    1. 单据转换,是否支持重复下推,支持新增下推和更新下推? 答:支持重复下推,是否允许下推受以下因素: 1).源分录是否是有效状态(源单单头状态会自动影响分录,下同),例如已审核.未关闭.未作废: 2 ...

  7. windows开启远程

    windows开启远程桌面超级简单,跟linux相比太简单了. 补充:有瑕疵,应该是远程中的远程桌面属性打钩,但是W8.1没有这个选项,W7可以,其次创建一个管理员账户,身份是管理员,不是标准用户,要 ...

  8. msp430入门编程01

    msp430单片机最小系统 msp430入门学习 msp430入门编程

  9. POJ 1061 青蛙的约会【扩欧】

    题意: 两只青蛙在地球同一纬度不同位置x,y向同一方向跳,每只青蛙跳的长度不同m,n,纬线总长度l,问两只青蛙是否能相遇,跳几次才相遇. 分析: 可知,问题可转化为求(m−n)∗a≡(y−x)(mod ...

  10. gulp基本语法

    pipe:用管道输送 1.gulp.src(glops[, options]) 输出(Emits)符合所提供的匹配模式(glob)或者匹配模式的数组(array of globs)的文件. 将返回一个 ...