The New InfluxDB Storage Engine: Time Structured Merge Tree

by Paul Dix | Oct 7, 2015 | InfluxDB | 0 comments

For more than a year we’ve been talking about potentially making a storage engine purpose-built for our use case of time series data. Today I’m excited to announce that we have the first version of our new storage engine available in a nightly build for testing. We’re calling it the Time Structured Merge Tree or TSM Tree for short.

In our early testing we’ve seen up to a 45x improvement in disk space usage over 0.9.4 and we’ve written 10,000,000,000 (10B) data points (divided over 100k unique series written in 5k point batches) at a sustained rate greater than 300,000 per second on an EC2 c3.8xlarge instance. This new engine uses up to 98% less disk space to store the same data as 0.9.4 with no reduction in query performance.

In this post I’ll talk a little bit about the new engine and give pointers to more detailed write-ups and instructions on how to get started with testing it out.

Columnar storage and unlimited fields

The new storage engine is a columnar format, which means that having multiple fields won’t negatively affect query performance. For this engine we’ve also lifted the limitation on the number of fields you can have in a measurement. For instance, you could have MySQL as the thing you’re measuring and represent each of the few hundred different metrics that you gather from MySQL as separate fields.

Even though the engine isn’t optimized for updates, the new columnar format also means that it’s possible to update single fields without touching the other fields for a given data point.

Compression

We use multiple compression techniques which vary depending on the data type of the field and the precision of the timestamps. Timestamp precision matters because you can represent them down to nanosecond scale. For timestamps we use delta encoding, scaling and compression using simple8b, run-length encoding or falling back to no compression if the deltas are too large. Timestamps in which the deltas are small and regular compress best. For instance, we can get great compression on nanosecond timestamps if they’re only 10ns apart each. We’d achieve the same level of compression for second precision timestamps that are 10s apart.

We use the same delta encoding for floats mentioned in Facebook’s Gorilla paper, bits for booleans, delta encoding for integers, and Snappy compression for strings. We’re also considering adding dictionary style compression for strings, which is very efficient if you have repeated strings.

Depending on the shape of your data, the total size for storage including all tag metadata can range from 2 bytes per point on the low end to more for random data. We found that random floats with second level precision in series sampled every 10 seconds take about 3 bytes per point. For reference, Graphite’s Whisper storage uses 12 bytes per point. Real world data will probably look a bit better since there are often repeated values or small deltas.

LSM Tree similarities

The new engine has similarities with LSM Trees (like LevelDB and Cassandra’s underlying storage). It has a write ahead log, index files that are read only, and it occasionally performs compactions to combine index files. We’re calling it a Time Structured Merge Tree because the index files keep contiguous blocks of time and the compactions merge those blocks into larger blocks of time.

Compression of the data improves as the index files are compacted. Once a shard becomes cold for writes it will be compacted into as few files as possible, which yield the best compression.

转自:https://www.influxdata.com/new-storage-engine-time-structured-merge-tree/

 

InfluxDB存储引擎Time Structured Merge Tree——本质上和LSM无异,只是结合了列存储压缩,其中引入fb的float压缩,字串字典压缩等的更多相关文章

  1. MySQL存储引擎 InnoDB/ MyISAM/ MERGE/ BDB 的区别

    MyISAM:默认的MySQL插件式存储引擎,它是在Web.数据仓储和其他应用环境下最常使用的存储引擎之一.注意,通过更改 STORAGE_ENGINE 配置变量,能够方便地更改MySQL服务器的默认 ...

  2. mysql 开发基础系列11 存储引擎memory和merge介绍

    一. memory存储引擎 memoery存储引擎是在内存中来创建表,每个memory表只实际对应一个磁盘文件格式是.frm.   该引擎的表访问非常得快,因为数据是放在内存中,且默认是hash索引, ...

  3. HBase底层存储原理——我靠,和cassandra本质上没有区别啊!都是kv 列存储,只是一个是p2p另一个是集中式而已!

    理解HBase(一个开源的Google的BigTable实际应用)最大的困难是HBase的数据结构概念究竟是什么?首先HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库.另一个不 ...

  4. facebook Presto SQL分析引擎——本质上和spark无异,分解stage,task,MR计算

    Presto 是由 Facebook 开源的大数据分布式 SQL 查询引擎,适用于交互式分析查询,可支持众多的数据源,包括 HDFS,RDBMS,KAFKA 等,而且提供了非常友好的接口开发数据源连接 ...

  5. MySQL(逻辑分层,存储引擎,sql优化,索引优化以及底层实现(B+Tree))

    一 , 逻辑分层 连接层:连接与线程处理,这一层并不是MySQL独有,一般的基于C/S架构的都有类似组件,比如连接处理.授权认证.安全等. 服务层:包括缓存查询.解析器.优化器,这一部分是MySQL核 ...

  6. [转][译] 存储引擎原理:LSM

    原译文地址:http://www.tuicool.com/articles/qqQV7za http://www.zhihu.com/question/19887265 http://blog.csd ...

  7. Log Structured Merge Trees(LSM) 算法

    十年前,谷歌发表了 “BigTable” 的论文,论文中很多很酷的方面之一就是它所使用的文件组织方式,这个方法更一般的名字叫 Log Structured-Merge Tree. LSM是当前被用在许 ...

  8. 第 3 章 MySQL 存储引擎简介

    第 3 章 MySQL 存储引擎简介 前言 3.1 MySQL 存储引擎概述 MyISAM 存储引擎是 MySQL 默认的存储引擎,也是目前 MySQL 使用最为广泛的存储引擎之一.他的前身就是我们在 ...

  9. 《MySQL技术内幕:InnoDB存储引擎(第2版)》书摘

    MySQL技术内幕:InnoDB存储引擎(第2版) 姜承尧 第1章 MySQL体系结构和存储引擎 >> 在上述例子中使用了mysqld_safe命令来启动数据库,当然启动MySQL实例的方 ...

随机推荐

  1. 用element-ui的走马灯carousel轻松实现自适应全屏banner图

    写在前面:网站轮播图建议使用swiper组件,非常方便快捷.vue轮播图插件之vue-awesome-swiper 接手一个项目,轮播图是用element-ui的carousel实现的,看起来效果还不 ...

  2. MySQL-----唯一索引

    唯一索引: 单列唯一索引和联合唯一索引 索引是为了加速查找. 唯一索引是加了约束条件.例如主外键. 唯一索引的约束: 约束不能重复(可以为空) 主键不能重复(不能为空) 加速查找 create tab ...

  3. c语言基础--数据类型

    一.整型数据: 1.表格: 类型名称 可简写 占用字节 数值范围 signed int int -2147483648(-2^31)~2147483647(2^31-1) unsigned int u ...

  4. 下载Spring4.1.x源码并用IntelliJ IDEA打开-----

    下载Spring4.1.x源码并用IntelliJ IDEA打开-------https://blog.csdn.net/boling_cavalry/article/details/79426075 ...

  5. centos7安装mysql5.7.19及配置远程连接

    centos7安装mysql5.7.19及配置远程连接------https://blog.csdn.net/Lh19931122/article/details/77996213

  6. Leetcode 211.添加与搜索单词

    添加与搜索单词 设计一个支持以下两种操作的数据结构: void addWord(word) bool search(word) search(word) 可以搜索文字或正则表达式字符串,字符串只包含字 ...

  7. SQL Server 2008如何创建定期自动备份任务

    我们知道,利用SQL Server 2008数据库可以实现数据库的定期自动备份.方法是用SQL SERVER 2008自带的维护计划创建一个计划对数据库进行备份,下面我们将SQL SERVER 200 ...

  8. android开发里跳过的坑-android studio 错误 Could not find junit:junit:4.12

    在导入一个新项目时,出现错误Could not find junit:junit:4.12,网上大多是说缺少junit的jar包,但我查看了安装目录下是有jnuit包的,并且新建的项目都没有问题.几经 ...

  9. codevs1792 分解质因数

    题目描述 Description 编写一个把整数N分解为质因数乘积的程序. 输入描述 Input Description 输入一个整数 N 输出描述 Output Description 输出 分解质 ...

  10. msp430入门编程11

    msp430中C语言的模块化头文件及实现11 msp430中C语言的模块化头文件及库文件12 msp430入门学习 msp430入门编程