InfluxDB存储引擎Time Structured Merge Tree——本质上和LSM无异,只是结合了列存储压缩,其中引入fb的float压缩,字串字典压缩等
The New InfluxDB Storage Engine: Time Structured Merge Tree
by Paul Dix | Oct 7, 2015 | InfluxDB | 0 comments
For more than a year we’ve been talking about potentially making a storage engine purpose-built for our use case of time series data. Today I’m excited to announce that we have the first version of our new storage engine available in a nightly build for testing. We’re calling it the Time Structured Merge Tree or TSM Tree for short.
In our early testing we’ve seen up to a 45x improvement in disk space usage over 0.9.4 and we’ve written 10,000,000,000 (10B) data points (divided over 100k unique series written in 5k point batches) at a sustained rate greater than 300,000 per second on an EC2 c3.8xlarge instance. This new engine uses up to 98% less disk space to store the same data as 0.9.4 with no reduction in query performance.
In this post I’ll talk a little bit about the new engine and give pointers to more detailed write-ups and instructions on how to get started with testing it out.
Columnar storage and unlimited fields
The new storage engine is a columnar format, which means that having multiple fields won’t negatively affect query performance. For this engine we’ve also lifted the limitation on the number of fields you can have in a measurement. For instance, you could have MySQL as the thing you’re measuring and represent each of the few hundred different metrics that you gather from MySQL as separate fields.
Even though the engine isn’t optimized for updates, the new columnar format also means that it’s possible to update single fields without touching the other fields for a given data point.
Compression
We use multiple compression techniques which vary depending on the data type of the field and the precision of the timestamps. Timestamp precision matters because you can represent them down to nanosecond scale. For timestamps we use delta encoding, scaling and compression using simple8b, run-length encoding or falling back to no compression if the deltas are too large. Timestamps in which the deltas are small and regular compress best. For instance, we can get great compression on nanosecond timestamps if they’re only 10ns apart each. We’d achieve the same level of compression for second precision timestamps that are 10s apart.
We use the same delta encoding for floats mentioned in Facebook’s Gorilla paper, bits for booleans, delta encoding for integers, and Snappy compression for strings. We’re also considering adding dictionary style compression for strings, which is very efficient if you have repeated strings.
Depending on the shape of your data, the total size for storage including all tag metadata can range from 2 bytes per point on the low end to more for random data. We found that random floats with second level precision in series sampled every 10 seconds take about 3 bytes per point. For reference, Graphite’s Whisper storage uses 12 bytes per point. Real world data will probably look a bit better since there are often repeated values or small deltas.
LSM Tree similarities
The new engine has similarities with LSM Trees (like LevelDB and Cassandra’s underlying storage). It has a write ahead log, index files that are read only, and it occasionally performs compactions to combine index files. We’re calling it a Time Structured Merge Tree because the index files keep contiguous blocks of time and the compactions merge those blocks into larger blocks of time.
Compression of the data improves as the index files are compacted. Once a shard becomes cold for writes it will be compacted into as few files as possible, which yield the best compression.
转自:https://www.influxdata.com/new-storage-engine-time-structured-merge-tree/
InfluxDB存储引擎Time Structured Merge Tree——本质上和LSM无异,只是结合了列存储压缩,其中引入fb的float压缩,字串字典压缩等的更多相关文章
- MySQL存储引擎 InnoDB/ MyISAM/ MERGE/ BDB 的区别
MyISAM:默认的MySQL插件式存储引擎,它是在Web.数据仓储和其他应用环境下最常使用的存储引擎之一.注意,通过更改 STORAGE_ENGINE 配置变量,能够方便地更改MySQL服务器的默认 ...
- mysql 开发基础系列11 存储引擎memory和merge介绍
一. memory存储引擎 memoery存储引擎是在内存中来创建表,每个memory表只实际对应一个磁盘文件格式是.frm. 该引擎的表访问非常得快,因为数据是放在内存中,且默认是hash索引, ...
- HBase底层存储原理——我靠,和cassandra本质上没有区别啊!都是kv 列存储,只是一个是p2p另一个是集中式而已!
理解HBase(一个开源的Google的BigTable实际应用)最大的困难是HBase的数据结构概念究竟是什么?首先HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库.另一个不 ...
- facebook Presto SQL分析引擎——本质上和spark无异,分解stage,task,MR计算
Presto 是由 Facebook 开源的大数据分布式 SQL 查询引擎,适用于交互式分析查询,可支持众多的数据源,包括 HDFS,RDBMS,KAFKA 等,而且提供了非常友好的接口开发数据源连接 ...
- MySQL(逻辑分层,存储引擎,sql优化,索引优化以及底层实现(B+Tree))
一 , 逻辑分层 连接层:连接与线程处理,这一层并不是MySQL独有,一般的基于C/S架构的都有类似组件,比如连接处理.授权认证.安全等. 服务层:包括缓存查询.解析器.优化器,这一部分是MySQL核 ...
- [转][译] 存储引擎原理:LSM
原译文地址:http://www.tuicool.com/articles/qqQV7za http://www.zhihu.com/question/19887265 http://blog.csd ...
- Log Structured Merge Trees(LSM) 算法
十年前,谷歌发表了 “BigTable” 的论文,论文中很多很酷的方面之一就是它所使用的文件组织方式,这个方法更一般的名字叫 Log Structured-Merge Tree. LSM是当前被用在许 ...
- 第 3 章 MySQL 存储引擎简介
第 3 章 MySQL 存储引擎简介 前言 3.1 MySQL 存储引擎概述 MyISAM 存储引擎是 MySQL 默认的存储引擎,也是目前 MySQL 使用最为广泛的存储引擎之一.他的前身就是我们在 ...
- 《MySQL技术内幕:InnoDB存储引擎(第2版)》书摘
MySQL技术内幕:InnoDB存储引擎(第2版) 姜承尧 第1章 MySQL体系结构和存储引擎 >> 在上述例子中使用了mysqld_safe命令来启动数据库,当然启动MySQL实例的方 ...
随机推荐
- LNMP环境搭建网站
系统:Centos7.4 一台服务器安装nginx.php.mysql 原理不是很懂,但实测如下两种环境下都能成功,这里做下记录: 1.一个干净的系统,从0开始完成所有步骤,完成LNMP搭建 2.已经 ...
- python 连接sqlserver: pymssql
停了一个月,终于还是把这个做了,工作需要!!!在装pymssql时,一直报错,确定了要先装freetds: 1. 安装freetds时报错,搜索到要先进行如下操作: brew unlink freet ...
- Python之字符串计算(计算器)
Python之字符串计算(计算器) import re expression = '-1-2*((60+2*(-3-40.0+42425/5)*(9-2*5/3+357/553/3*99/4*2998 ...
- MySQL Connector/Python 接口 (三)
本文参见这里. 使用缓冲的 cursor,下例给从2000年加入公司并且还在公司的员工薪水从明天起加15% from __future__ import print_function from dec ...
- 100ns周期200ns的正脉冲波形形状描述
用FPGA控制16245产生正脉冲,正脉冲的形状是上升会有过冲现象,下降会有震荡产生,做了个实验室,用同轴电缆承载这种信号,在同轴电缆的末端会产生的波形是标准的衰减震荡. (简单的入pcb,经过继电器 ...
- 九度oj 题目1190:大整数排序
题目1190:大整数排序 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:4142 解决:1867 题目描述: 对N个长度最长可达到1000的数进行排序. 输入: 输入第一行为一个整数N,( ...
- Codeforces913E. Logical Expression
现有串x=11110000,y=11001100,z=10101010,通过这三个串只用与或非三种操作到达给定的串,优先级非>或>与,可以加括号,问表达式最短的里面字典序最小的是谁,有&l ...
- set(集合)数据类型【七】
一.概述:(类似于Java的Set,不允许有重复元素) 在Redis中,我们可以将Set类型看作为没有排序的字符集合,和List类型一样,我们也可以在该类型的数据值上执行添加.删除或判断某一元素是否存 ...
- UVA 10603_Fill
题意: 给定三个杯子容量,初始只有第三个杯子满,其余为空,求最少需要倒多少水才能让某一杯子中有d升水,如果不能达到,则小于d且尽量接近. 分析: 因为要求转移水量最少,所以采用优先级队列保存每次的状态 ...
- POJ2632 Crashing Robots 解题报告
Description In a modernized warehouse, robots are used to fetch the goods. Careful planning is neede ...