题意:

给定一幅图, 问符不符合一下两个条件;

(1) 图中没有环

(2)图中存在一条链, 点要么在链上, 要么是链上点的邻居。

分析:

建图,记录度数, 去掉所有度为1的点, 然后看看剩下是否是有2个度为1的点和其他都是度为2的点。

#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<string>
#include<map>
#include<stack>
#include<vector>
#include<algorithm>
#include<cmath>
#define rep(i,a,b) for(int i = a; i < b; i++)
#define _rep(i,a,b) for(int i = a; i <= b; i++)
using namespace std;
int G[][];
int n, m;
int deg[], vis[];
int main(){
// freopen("1.txt","r", stdin);
int kase = ;
while(~scanf("%d", &n) && n){
memset(G,,sizeof(G));
memset(deg,,sizeof(deg));
memset(vis,,sizeof(vis));
scanf("%d", &m);
for(int i = ; i < m ; i++){
int u, v;
scanf("%d %d", &u, &v);
G[u][v] = G[v][u] = ;
deg[u]++;
deg[v]++;
}
for(int i = ; i <= n; i++){
if(deg[i] == ){ //把度为1的点全部删除, 把链上的分叉的消去
vis[i] = ;
for(int j = ; j <= n; j++){
if(G[i][j])
deg[j]--;
}
}
}
int ok = , _1 = , _2 = ,cnt = ;
for(int i = ;i <= n; i++){
if(!vis[i]){
cnt++;
if(deg[i] == ) _1++;//统计剩下点度为1的
else if(deg[i] == ) _2++;//统计剩下度为2的
}
}
if(!(_1 == && _2 == (cnt-))) ok = ;//如果有2个度为1, 其他都是2, 那么就是一条链, 其他情况都不符合
if(ok)
printf("Graph %d is a caterpillar.\n",kase++);
else printf("Graph %d is not a caterpillar.\n",kase++);
}
return ;
}

POJ 3310 Caterpillar(图的度的判定)的更多相关文章

  1. poj 3310(并查集判环,图的连通性,树上最长直径路径标记)

    题目链接:http://poj.org/problem?id=3310 思路:首先是判断图的连通性,以及是否有环存在,这里我们可以用并查集判断,然后就是找2次dfs找树上最长直径了,并且对树上最长直径 ...

  2. POJ 1637 混合图的欧拉回路判定

    题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...

  3. poj 1659 Frogs&#39; Neighborhood 度序列可图化 贪心

    题意: 对一个无向图给出一个度序列,问他是否可简单图化. 分析: 依据Havel定理,直接贪心就可以. 代码: //poj 1659 //sep9 #include <iostream> ...

  4. poj 1144 Network 图的割顶判断模板

    Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8797   Accepted: 4116 Descripti ...

  5. POJ 1637 混合图欧拉回路

    先来复习一下混合图欧拉回路:给定一张含有单向边和双向边的图,使得每一点的入度出度相同. 首先对于有向边来说,它能贡献的入度出度是确定的,我们不予考虑.对于无向图,它可以通过改变方向来改变两端点的出入度 ...

  6. POJ 1659 Frogs&#39; Neighborhood(度序列组成)

    意甲冠军  中国 依据Havel-Hakimi定理构图即可咯  先把顶点按度数从大到小排序  可图的话  度数大的顶点与它后面的度数个顶点相连肯定是满足的  出现了-1就说明不可图了 #include ...

  7. poj 1129(dfs+图的四色定理)

    题目链接:http://poj.org/problem?id=1129 思路:根据图的四色定理,最多四种颜色就能满足题意,使得相邻的两部分颜色不同.而最多又只有26个点,因此直接dfs即可. #inc ...

  8. POJ 2942Knights of the Round Table(二分图判定+双连通分量)

    题目链接 题意:一些骑士,他们有些人之间有矛盾,现在要求选出一些骑士围成一圈,圈要满足如下条件:1.人数大于1.2.总人数为奇数.3.有仇恨的骑士不能挨着坐.问有几个骑士不能和任何人形成任何的圆圈. ...

  9. BZOJ-1305 dance跳舞 建图+最大流+二分判定

    跟随YveH的脚步又做了道网络流...%%% 1305: [CQOI2009]dance跳舞 Time Limit: 5 Sec Memory Limit: 162 MB Submit: 2119 S ...

随机推荐

  1. 019 [工具软件]窗体置顶 DeskPins

    DeskPins:Windows下将任何窗体置顶的工具 官方主页:https://efotinis.neocities.org/deskpins/index.html 官方下载的是一个exe安装包,用 ...

  2. mysql 三大范式【转载】

    第一范式(1NF,normal format):字段不能再分. 这是字段的原子性.例如:字段“学期时间”:2014-9-1,2015-1-15. 这个字段“学期时间”可以再分为“学期开始时间”,201 ...

  3. Oozie的架构

    Oozie的架构图,如下: 从oozie的架构图中,可以看到所有的任务都是通过oozie生成相应的任务客户端,并通过任务客户端来提交相应的任务. 继续...

  4. AJPFX实现兔子问题

    有一对小兔子,从第三个月长成开始每个月生一对小兔子,新出生的小兔子从第三个月长成开始每个月也生一对小兔子,假设所有的兔子都不会死,问每个月兔子的总数?(月数可以是6,12).大神看看我笨方法谢的对吗? ...

  5. android studio 导入jar包

    或者还可以这么导入: 1.首先先去下载需要的jar包2.将jar包复制到Project下的app–>libs目录下(没有libs目录就新建一个)如下图所示位置: 3.点击工具栏中的Project ...

  6. 设计 REST API 的13个最佳实践

    写在前面 之所以翻译这篇文章,是因为自从成为一名前端码农之后,调接口这件事情就成为了家常便饭,并且,还伴随着无数的争论与无奈.编写友好的 restful api 不论对于你的同事,还是将来作为第三方服 ...

  7. 清理xcode缓存

    code版本:8.3.3 iOS版本:10.3.2 移除 Xcode 运行安装 APP 产生的缓存文件(DerivedData) 只要重新运行Xcode就一定会重新生成,而且会随着运行程序的增多,占用 ...

  8. Android图片压缩上传(二)

    之前有用到libjpeg,还是有一定的局限性,最近用了一个新的方式,效果还是挺不错,随着作者的版本更新,Bug也随之变少,目前项目中运用已上线. 1.之前的方式Android图片压缩,不失真,上线项目 ...

  9. laravel学习笔记(一)

    laravel 简述 优点:优雅.简洁.工程化(项目架构,协同开发) 版本:2011 June 1.0 ,LTS(long time) ,laravel 5.4 功能:队列.搜索.数据库搜索.定时脚本 ...

  10. Java子类与父类方法的隐藏和覆盖

    class Base{     int x = 1;     static int y = 2;     String name(){         return "mother" ...