题意:

给定一幅图, 问符不符合一下两个条件;

(1) 图中没有环

(2)图中存在一条链, 点要么在链上, 要么是链上点的邻居。

分析:

建图,记录度数, 去掉所有度为1的点, 然后看看剩下是否是有2个度为1的点和其他都是度为2的点。

#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<string>
#include<map>
#include<stack>
#include<vector>
#include<algorithm>
#include<cmath>
#define rep(i,a,b) for(int i = a; i < b; i++)
#define _rep(i,a,b) for(int i = a; i <= b; i++)
using namespace std;
int G[][];
int n, m;
int deg[], vis[];
int main(){
// freopen("1.txt","r", stdin);
int kase = ;
while(~scanf("%d", &n) && n){
memset(G,,sizeof(G));
memset(deg,,sizeof(deg));
memset(vis,,sizeof(vis));
scanf("%d", &m);
for(int i = ; i < m ; i++){
int u, v;
scanf("%d %d", &u, &v);
G[u][v] = G[v][u] = ;
deg[u]++;
deg[v]++;
}
for(int i = ; i <= n; i++){
if(deg[i] == ){ //把度为1的点全部删除, 把链上的分叉的消去
vis[i] = ;
for(int j = ; j <= n; j++){
if(G[i][j])
deg[j]--;
}
}
}
int ok = , _1 = , _2 = ,cnt = ;
for(int i = ;i <= n; i++){
if(!vis[i]){
cnt++;
if(deg[i] == ) _1++;//统计剩下点度为1的
else if(deg[i] == ) _2++;//统计剩下度为2的
}
}
if(!(_1 == && _2 == (cnt-))) ok = ;//如果有2个度为1, 其他都是2, 那么就是一条链, 其他情况都不符合
if(ok)
printf("Graph %d is a caterpillar.\n",kase++);
else printf("Graph %d is not a caterpillar.\n",kase++);
}
return ;
}

POJ 3310 Caterpillar(图的度的判定)的更多相关文章

  1. poj 3310(并查集判环,图的连通性,树上最长直径路径标记)

    题目链接:http://poj.org/problem?id=3310 思路:首先是判断图的连通性,以及是否有环存在,这里我们可以用并查集判断,然后就是找2次dfs找树上最长直径了,并且对树上最长直径 ...

  2. POJ 1637 混合图的欧拉回路判定

    题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...

  3. poj 1659 Frogs&#39; Neighborhood 度序列可图化 贪心

    题意: 对一个无向图给出一个度序列,问他是否可简单图化. 分析: 依据Havel定理,直接贪心就可以. 代码: //poj 1659 //sep9 #include <iostream> ...

  4. poj 1144 Network 图的割顶判断模板

    Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8797   Accepted: 4116 Descripti ...

  5. POJ 1637 混合图欧拉回路

    先来复习一下混合图欧拉回路:给定一张含有单向边和双向边的图,使得每一点的入度出度相同. 首先对于有向边来说,它能贡献的入度出度是确定的,我们不予考虑.对于无向图,它可以通过改变方向来改变两端点的出入度 ...

  6. POJ 1659 Frogs&#39; Neighborhood(度序列组成)

    意甲冠军  中国 依据Havel-Hakimi定理构图即可咯  先把顶点按度数从大到小排序  可图的话  度数大的顶点与它后面的度数个顶点相连肯定是满足的  出现了-1就说明不可图了 #include ...

  7. poj 1129(dfs+图的四色定理)

    题目链接:http://poj.org/problem?id=1129 思路:根据图的四色定理,最多四种颜色就能满足题意,使得相邻的两部分颜色不同.而最多又只有26个点,因此直接dfs即可. #inc ...

  8. POJ 2942Knights of the Round Table(二分图判定+双连通分量)

    题目链接 题意:一些骑士,他们有些人之间有矛盾,现在要求选出一些骑士围成一圈,圈要满足如下条件:1.人数大于1.2.总人数为奇数.3.有仇恨的骑士不能挨着坐.问有几个骑士不能和任何人形成任何的圆圈. ...

  9. BZOJ-1305 dance跳舞 建图+最大流+二分判定

    跟随YveH的脚步又做了道网络流...%%% 1305: [CQOI2009]dance跳舞 Time Limit: 5 Sec Memory Limit: 162 MB Submit: 2119 S ...

随机推荐

  1. 当不知道基本数据类型的取值范围时,可以通过max_value等来查询

    public class Demo03{ public static void main(String[] args){ System.out.println("int MAX " ...

  2. spark Listener和metrics实现分析

    在spark内部,rpc可以用来实现不同组件(Driver, executor,client)之间的远程交互.而在同一组件内,spark还有事件监听机制,如spark中各种指标的采集主要就是通过事件监 ...

  3. JS执行保存在数据库中的JS代码

    function createScript(script) { var myScript = document.createElement("script"); myScript. ...

  4. [转]ASP.NET MVC URL重写与优化(进阶篇)-继承RouteBase玩转URL

    本文转自:http://www.cnblogs.com/John-Connor/archive/2012/05/03/2478821.html 引言-- 在初级篇中,我们介绍了如何利用基于ASP.NE ...

  5. 小程序canvas截图组件

    最近做一个小程序的过程中,需要用到截图功能,网上搜了一下,发现没有符合要求的,就自己搞了个组件,方便复用. 目前功能很简单,传入宽高和图片路径即可,宽高是为了计算截图的比例,只支持缩放和移动. 实现思 ...

  6. Android开发中SharedPreferences的使用

    在Android开发中,在储存少量的数据时,个人感觉SharedPreferences是最好的选择,SharedPreferences是以键值对的方式进行储存,支持boolean,int,float, ...

  7. Quartz使用一 通过getJobDataMap传递数据

    Quartz定时器使用比较广泛,介绍一点简单的使用 上代码:定义一个Job,执行具体的任务 package org.tonny.quartz; import java.text.SimpleDateF ...

  8. 工作中Docker使用命令笔记

    docker安装与启动 安装docker [root@localhost /]# yum -y install docker-io 更改配置文件 [root@localhost /]# vi /etc ...

  9. C#读取web.config配置文件内容

    1.对配置文件的访问. 方法一: string myConn =System.Configuration.ConfigurationManager.ConnectionStrings["sq ...

  10. EF为什么向我的数据库再次插入已有对象?(ZT)

    最近做了个多对多对实体对象,结果发现每次只要增加一个子实体,就会自动添加一个父实体进去,而不管该父实体是否已经存在. 找了好久,终于找到这篇文章,照文章内容来看,应该是断开连接导致的. 原文地址:ht ...