POJ 3310 Caterpillar(图的度的判定)
题意:
给定一幅图, 问符不符合一下两个条件;
(1) 图中没有环
(2)图中存在一条链, 点要么在链上, 要么是链上点的邻居。
分析:
建图,记录度数, 去掉所有度为1的点, 然后看看剩下是否是有2个度为1的点和其他都是度为2的点。
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<string>
#include<map>
#include<stack>
#include<vector>
#include<algorithm>
#include<cmath>
#define rep(i,a,b) for(int i = a; i < b; i++)
#define _rep(i,a,b) for(int i = a; i <= b; i++)
using namespace std;
int G[][];
int n, m;
int deg[], vis[];
int main(){
// freopen("1.txt","r", stdin);
int kase = ;
while(~scanf("%d", &n) && n){
memset(G,,sizeof(G));
memset(deg,,sizeof(deg));
memset(vis,,sizeof(vis));
scanf("%d", &m);
for(int i = ; i < m ; i++){
int u, v;
scanf("%d %d", &u, &v);
G[u][v] = G[v][u] = ;
deg[u]++;
deg[v]++;
}
for(int i = ; i <= n; i++){
if(deg[i] == ){ //把度为1的点全部删除, 把链上的分叉的消去
vis[i] = ;
for(int j = ; j <= n; j++){
if(G[i][j])
deg[j]--;
}
}
}
int ok = , _1 = , _2 = ,cnt = ;
for(int i = ;i <= n; i++){
if(!vis[i]){
cnt++;
if(deg[i] == ) _1++;//统计剩下点度为1的
else if(deg[i] == ) _2++;//统计剩下度为2的
}
}
if(!(_1 == && _2 == (cnt-))) ok = ;//如果有2个度为1, 其他都是2, 那么就是一条链, 其他情况都不符合
if(ok)
printf("Graph %d is a caterpillar.\n",kase++);
else printf("Graph %d is not a caterpillar.\n",kase++);
}
return ;
}
POJ 3310 Caterpillar(图的度的判定)的更多相关文章
- poj 3310(并查集判环,图的连通性,树上最长直径路径标记)
题目链接:http://poj.org/problem?id=3310 思路:首先是判断图的连通性,以及是否有环存在,这里我们可以用并查集判断,然后就是找2次dfs找树上最长直径了,并且对树上最长直径 ...
- POJ 1637 混合图的欧拉回路判定
题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...
- poj 1659 Frogs' Neighborhood 度序列可图化 贪心
题意: 对一个无向图给出一个度序列,问他是否可简单图化. 分析: 依据Havel定理,直接贪心就可以. 代码: //poj 1659 //sep9 #include <iostream> ...
- poj 1144 Network 图的割顶判断模板
Network Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8797 Accepted: 4116 Descripti ...
- POJ 1637 混合图欧拉回路
先来复习一下混合图欧拉回路:给定一张含有单向边和双向边的图,使得每一点的入度出度相同. 首先对于有向边来说,它能贡献的入度出度是确定的,我们不予考虑.对于无向图,它可以通过改变方向来改变两端点的出入度 ...
- POJ 1659 Frogs' Neighborhood(度序列组成)
意甲冠军 中国 依据Havel-Hakimi定理构图即可咯 先把顶点按度数从大到小排序 可图的话 度数大的顶点与它后面的度数个顶点相连肯定是满足的 出现了-1就说明不可图了 #include ...
- poj 1129(dfs+图的四色定理)
题目链接:http://poj.org/problem?id=1129 思路:根据图的四色定理,最多四种颜色就能满足题意,使得相邻的两部分颜色不同.而最多又只有26个点,因此直接dfs即可. #inc ...
- POJ 2942Knights of the Round Table(二分图判定+双连通分量)
题目链接 题意:一些骑士,他们有些人之间有矛盾,现在要求选出一些骑士围成一圈,圈要满足如下条件:1.人数大于1.2.总人数为奇数.3.有仇恨的骑士不能挨着坐.问有几个骑士不能和任何人形成任何的圆圈. ...
- BZOJ-1305 dance跳舞 建图+最大流+二分判定
跟随YveH的脚步又做了道网络流...%%% 1305: [CQOI2009]dance跳舞 Time Limit: 5 Sec Memory Limit: 162 MB Submit: 2119 S ...
随机推荐
- 关于asp.net网址出现乱码问题的解决方法
背景: asp.net项目,C#,VS2010,.netframework 4.0 创建之初,没有任何问题,随着项目文件的增多,不免很多问题会出现, 最近就莫名其妙的发现我的项目网址多了一段乱码,很是 ...
- hbase-shell + hbase的java api
本博文的主要内容有 .HBase的单机模式(1节点)安装 .HBase的单机模式(1节点)的启动 .HBase的伪分布模式(1节点)安装 .HBase的伪分布模式(1节点)的启动 .HBas ...
- linux软件的安装。使用rpm、yum或wget下载软件
介绍 在linux中安装软件一般有一下几种方式: a.通过rpm包安装 b.通过yum在线安装(联网) c.weget url 在线下载软件(只负责下载,不安装) 1.通过rpm包来进行软件的安装和卸 ...
- Contextual Action bar(3) 两个示例
一.通过activity启动Context Action Bar 1.主java public class ActivityActionModeFrgmt extends Fragment imple ...
- vue中的问题思考
1.为什么 data 要写成函数,而不允许写成对象? 思考:data是 Vue 实例上的一个属性.2. 对象是对于内存地址的引用.3. 函数有自己的作用域空间. 第一点无可厚非,data属性附着于 V ...
- C51之数据范围
在C51中各数据类型的范围如下:如果宏常量大于65536,则要加UL后缀:乘法运算不能只将结果强制类型转换,而应在被乘数前加(unsigned long)强制转换. 2 因为RAM有限,所以运算量大的 ...
- NodeJS&&前端思考
做大型软件(工程化): 1.测试相关 tdd / bdd 测试覆盖率 2.规范化 standard.各种 lint.hint 3.构建相关 gulp.grunt.webpack,大量插件 4.生成器 ...
- 8.bootstrap下拉菜单、按钮组、按钮式下拉菜单
下拉菜单 dropdown 对齐方式: .dropdown-menu-right .dropdown-menu-left <div class="container" ...
- jQuery选择器之表单对象属性筛选选择器
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-type" content ...
- JD IPO address by liuqiangdong
Ladies and gentlemen, Good evening.I'd rather use english, not mandarin.Because during the road show ...