05-树9 Huffman Codes(30 分)

In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2≤N≤63), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1] f[1] c[2] f[2] ... c[N] f[N]

where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (≤1000), then followed by M student submissions. Each student submission consists of Nlines, each in the format:

c[i] code[i]

where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0's and '1's.

Output Specification:

For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.

Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

Sample Input:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11

Sample Output:

Yes
Yes
No
No
这个程序我花了不少时间,改改,找错误,放弃,重写。只能 说细节很多,感觉每个程序 都不是那么简单,需要自己 默默地付出许多。
 #include<iostream>
#include<vector>
using namespace std;
#define maxsize 64
struct node{
int weight=-;
node* l=NULL;
node* r=NULL;
};
using haffmantree=node;
vector<node> Minheap;
vector<int> no;
int size,flag=;
void Createheap(int N){
Minheap.resize(N+);
node n; Minheap[]=n;
size=;
}
void Insert(node n){
int i=++size;
for(;Minheap[i/].weight>n.weight;i/=)
Minheap[i]=Minheap[i/];
Minheap[i]=n;
}
void ReadData(int N){
for(int i=;i<=N;i++){
string str; int num;
cin>>str>>num;
no.push_back(num);
node n;
n.weight=num;
Insert(n);
}
}
node* Delete(){
node* n=new node();
n->l=Minheap[].l;
n->r=Minheap[].r;
n->weight=Minheap[].weight;
node temp=Minheap[size--];
int parent,child;
for(parent=;parent*<=size;parent=child){
child=*parent;
if(child!=size&&Minheap[child+].weight<Minheap[child].weight)
++child;
if(temp.weight<=Minheap[child].weight) break;
else
Minheap[parent]=Minheap[child];
}
Minheap[parent]=temp;
return n;
}
haffmantree huffman(int N){
node T;
for(int i=;i<N;i++){
node n;
n.l=Delete();
n.r=Delete();
n.weight=n.l->weight+n.r->weight;
Insert(n);
}
T=*Delete();
return T;
}
int WPL(haffmantree T,int depth)
{
if(T.l==NULL&&T.r==NULL) return depth*(T.weight);
else return WPL(*(T.l),depth+)+WPL(*(T.r),depth+);
}
void judge(haffmantree* h,string code){
for(int i=;i<code.length();i++){
if(code[i]==''){
if(h->l==NULL){
node* nod=new node();
h->l=nod;
}
else if(h->l->weight>)
flag=;
h=h->l;
}
else if(code[i]==''){
if(h->r==NULL){
node* nod=new node();
h->r=nod;
}else if(h->r->weight>)
flag=;
h=h->r;
}
}
if(h->r==NULL&&h->l==NULL)
h->weight=;
else flag=;
}
int main(){
int N; cin>>N;
Createheap(N);
ReadData(N);
haffmantree T=huffman(N);
int wpl=WPL(T,);
int M; cin>>M;
for(int i=;i<=M;i++){
int len=; haffmantree* h=new node();
for(int j=;j<N;j++){
string str,code;
cin>>str>>code;
judge(h,code);
len+=no[j]*code.length();
}
if(len!=wpl) flag=;
if(flag==) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
flag=;
}
return ;
}

Huffman codes的更多相关文章

  1. PAT 05-树8 Huffman Codes

    以现在的生产力,是做不到一天一篇博客了.这题给我难得不行了,花了两天时间在PAT上还有测试点1没过,先写上吧.记录几个做题中的难点:1.本来比较WPL那块我是想用一个函数实现的,无奈我对传字符串数组无 ...

  2. 05-树9 Huffman Codes

    哈夫曼树 Yes 需满足两个条件:1.HuffmanTree 结构不同,但WPL一定.子串WPL需一致 2.判断是否为前缀码 开始判断用的strstr函数,但其传值应为char *,不能用在strin ...

  3. 05-树9 Huffman Codes及基本操作

    哈夫曼树与哈弗曼编码 哈夫曼树 带权路径长度(WPL):设二叉树有n个叶子结点,每个叶子结点带有权值 Wk,从根结点到每个叶子结点的长度为 Lk,则每个叶子结点的带权路径长度之和就是: WPL = 最 ...

  4. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  5. pta5-9 Huffman Codes (30分)

    5-9 Huffman Codes   (30分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  6. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  7. PTA 05-树9 Huffman Codes (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/671 5-9 Huffman Codes   (30分) In 1953, David ...

  8. 数据结构慕课PTA 05-树9 Huffman Codes

    题目内容 In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Re ...

  9. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

随机推荐

  1. 最小公倍数的最小和(Minimum Sum LCM )

    #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> u ...

  2. 最小生成树Prim算法和Kruskal算法(转)

    (转自这位大佬的博客 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html ) Prim算法 1.概览 普里姆算法(Pr ...

  3. Python标准库 re

    正则表达式 regular expression 用来匹配一系列符合句法规则的字符串,是一门独立的小型的语言,如果你了解类Unix系统,那么你对正则表达式就一定不陌生.正则表达式的概念最初是由Unix ...

  4. 看Facebook是如何优化React Native性能

    原文出处: facebook   译文出处:@Siva海浪高 该文章翻译自Facebook官方博客,传送门 React Native 允许我们运用 React 和 Relay 提供的声明式的编程模型, ...

  5. 在nginx上部署vue项目(history模式)--demo实列;

    在很早之前,我写了一篇 关于 在nginx上部署vue项目(history模式) 但是讲的都是理论,所以今天做个demo来实战下.有必要让大家更好的理解,我发现搜索这类似的问题还是挺多的,因此在写一篇 ...

  6. 【Jenkins】Jenkins配置从节点,实现远程主机调用功能

    一.需求 使用Jenkins进行持续集成部署过程中,需要用到远端主机的处理功能.如部署到远程主机.文件备份等功能 二.思路 1.当远端主机为Linux系统时使用Publish Over SSH Plu ...

  7. MyBatis学习(三)

    前言 感觉学习进度还是比较慢啊,一整天的学习效率不是很高,一会看电视,一会喝茶,对自己的要求不严格...今天就说说关联表数据的插入以及别名的使用. 正文 1.关联插入 之前,我在数据库中已经创建了一张 ...

  8. mac osx上为qt应用生成debug symbol

    mac平台上,希望Qt编译的release程序也能包含debug symbol,这样出问题以后便于查找问题 开始按照http://doc.qt.io/qt-4.8/mac-differences.ht ...

  9. dircolors - 设置‘ls'显示结果的颜色

    SYNOPSIS[总览] dircolors [-b] [--sh] [--bourne-shell] [-c] [--csh] [--c-shell] [-p] [--print-database] ...

  10. java 随机数 <%=System.currentTimeMillis() %>

    java 随机数<c:set var="version" value="<%=System.currentTimeMillis() %>"/& ...