Huffman codes
05-树9 Huffman Codes(30 分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.
Input Specification:
Each input file contains one test case. For each case, the first line gives an integer N (2≤N≤63), then followed by a line that contains all the N distinct characters and their frequencies in the following format:
c[1] f[1] c[2] f[2] ... c[N] f[N]
where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (≤1000), then followed by M student submissions. Each student submission consists of Nlines, each in the format:
c[i] code[i]
where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0's and '1's.
Output Specification:
For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.
Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.
Sample Input:
7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11
Sample Output:
Yes
Yes
No
No
这个程序我花了不少时间,改改,找错误,放弃,重写。只能 说细节很多,感觉每个程序 都不是那么简单,需要自己 默默地付出许多。
#include<iostream>
#include<vector>
using namespace std;
#define maxsize 64
struct node{
int weight=-;
node* l=NULL;
node* r=NULL;
};
using haffmantree=node;
vector<node> Minheap;
vector<int> no;
int size,flag=;
void Createheap(int N){
Minheap.resize(N+);
node n; Minheap[]=n;
size=;
}
void Insert(node n){
int i=++size;
for(;Minheap[i/].weight>n.weight;i/=)
Minheap[i]=Minheap[i/];
Minheap[i]=n;
}
void ReadData(int N){
for(int i=;i<=N;i++){
string str; int num;
cin>>str>>num;
no.push_back(num);
node n;
n.weight=num;
Insert(n);
}
}
node* Delete(){
node* n=new node();
n->l=Minheap[].l;
n->r=Minheap[].r;
n->weight=Minheap[].weight;
node temp=Minheap[size--];
int parent,child;
for(parent=;parent*<=size;parent=child){
child=*parent;
if(child!=size&&Minheap[child+].weight<Minheap[child].weight)
++child;
if(temp.weight<=Minheap[child].weight) break;
else
Minheap[parent]=Minheap[child];
}
Minheap[parent]=temp;
return n;
}
haffmantree huffman(int N){
node T;
for(int i=;i<N;i++){
node n;
n.l=Delete();
n.r=Delete();
n.weight=n.l->weight+n.r->weight;
Insert(n);
}
T=*Delete();
return T;
}
int WPL(haffmantree T,int depth)
{
if(T.l==NULL&&T.r==NULL) return depth*(T.weight);
else return WPL(*(T.l),depth+)+WPL(*(T.r),depth+);
}
void judge(haffmantree* h,string code){
for(int i=;i<code.length();i++){
if(code[i]==''){
if(h->l==NULL){
node* nod=new node();
h->l=nod;
}
else if(h->l->weight>)
flag=;
h=h->l;
}
else if(code[i]==''){
if(h->r==NULL){
node* nod=new node();
h->r=nod;
}else if(h->r->weight>)
flag=;
h=h->r;
}
}
if(h->r==NULL&&h->l==NULL)
h->weight=;
else flag=;
}
int main(){
int N; cin>>N;
Createheap(N);
ReadData(N);
haffmantree T=huffman(N);
int wpl=WPL(T,);
int M; cin>>M;
for(int i=;i<=M;i++){
int len=; haffmantree* h=new node();
for(int j=;j<N;j++){
string str,code;
cin>>str>>code;
judge(h,code);
len+=no[j]*code.length();
}
if(len!=wpl) flag=;
if(flag==) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
flag=;
}
return ;
}
Huffman codes的更多相关文章
- PAT 05-树8 Huffman Codes
以现在的生产力,是做不到一天一篇博客了.这题给我难得不行了,花了两天时间在PAT上还有测试点1没过,先写上吧.记录几个做题中的难点:1.本来比较WPL那块我是想用一个函数实现的,无奈我对传字符串数组无 ...
- 05-树9 Huffman Codes
哈夫曼树 Yes 需满足两个条件:1.HuffmanTree 结构不同,但WPL一定.子串WPL需一致 2.判断是否为前缀码 开始判断用的strstr函数,但其传值应为char *,不能用在strin ...
- 05-树9 Huffman Codes及基本操作
哈夫曼树与哈弗曼编码 哈夫曼树 带权路径长度(WPL):设二叉树有n个叶子结点,每个叶子结点带有权值 Wk,从根结点到每个叶子结点的长度为 Lk,则每个叶子结点的带权路径长度之和就是: WPL = 最 ...
- 05-树9 Huffman Codes (30 分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...
- pta5-9 Huffman Codes (30分)
5-9 Huffman Codes (30分) In 1953, David A. Huffman published his paper "A Method for the Const ...
- 05-树9 Huffman Codes (30 分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...
- PTA 05-树9 Huffman Codes (30分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/671 5-9 Huffman Codes (30分) In 1953, David ...
- 数据结构慕课PTA 05-树9 Huffman Codes
题目内容 In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Re ...
- 05-树9 Huffman Codes (30 分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...
随机推荐
- JavaSE基础知识结构
- Hexo瞎折腾系列(5) - 使用hexo-neat插件压缩页面静态资源
为什么要压缩页面静态资源 对于个人博客来说,优化页面的访问速度是很有必要的,如果打开你的个人站点,加载个首页就要十几秒,页面长时间处于空白状态,想必没什么人能够忍受得了吧.我个人觉得,如果能把页面的加 ...
- c++中的虚函数是什么东西?
#include <iostream> #include<string> #include<vector> using namespace std; class A ...
- synchronized(6)修饰语方法之:static方法
当一个synchronized关键字修饰的方法同时又被static修饰,之前说过,非静态的同步方法会将对象上锁,但是静态方法不属于对象,而是属于类,它会将这个方法所在的类的Class对象上锁. 一个类 ...
- JAVA常用知识总结(五)——Linux
简单介绍一下 Linux 文件系统? 在Linux操作系统中,所有被操作系统管理的资源,例如网络接口卡.磁盘驱动器.打印机.输入输出设备.普通文件或是目录都被看作是一个文件. 也就是说在LINUX系统 ...
- 增强的for循环
- PHP pack和unpack函数详解
pack 压缩资料到位字符串之中. 语法: string pack(string format, mixed [args]...); 返回值: 字符串 函数种类: 资料处理 内容说明 本函数用来将资料 ...
- 多路复用IO和异步IO
多路复用I/O 它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程. 流程图如下: 当用户进程调用了sel ...
- Vue 2.0入门基础知识之内部指令
1.Vue.js介绍 当前前端三大主流框架:Angular.React.Vue.React前段时间由于许可证风波,使得Vue的热度蹭蹭地上升.另外,Vue友好的API文档更是一大特色.Vue.js是一 ...
- mysql5.7.25集群部署和方案设计(附PXC一键部署脚本)
还记得我们之前部署mysql集群有多麻烦嘛?波哥来救你们啦!~ 我已将项目上传到了我的github仓库中,大家可以点击仓库地址出现的连接登录查看相应的代码!如果觉得不错别忘了转发.点赞哦! 部署步骤: ...