Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) E. Prairie Partition 二分+贪心
It can be shown that any positive integer x can be uniquely represented as x = 1 + 2 + 4 + ... + 2k - 1 + r, where k and r are integers, k ≥ 0, 0 < r ≤ 2k. Let's call that representation prairie partition of x.
For example, the prairie partitions of 12, 17, 7 and 1 are:
12 = 1 + 2 + 4 + 5,
17 = 1 + 2 + 4 + 8 + 2,
7 = 1 + 2 + 4,
1 = 1.
Alice took a sequence of positive integers (possibly with repeating elements), replaced every element with the sequence of summands in its prairie partition, arranged the resulting numbers in non-decreasing order and gave them to Borys. Now Borys wonders how many elements Alice's original sequence could contain. Find all possible options!
The first line contains a single integer n (1 ≤ n ≤ 105) — the number of numbers given from Alice to Borys.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1012; a1 ≤ a2 ≤ ... ≤ an) — the numbers given from Alice to Borys.
Output, in increasing order, all possible values of m such that there exists a sequence of positive integers of length m such that if you replace every element with the summands in its prairie partition and arrange the resulting numbers in non-decreasing order, you will get the sequence given in the input.
If there are no such values of m, output a single integer -1.
8
1 1 2 2 3 4 5 8
2
In the first example, Alice could get the input sequence from [6, 20] as the original sequence.
In the second example, Alice's original sequence could be either [4, 5] or [3, 3, 3].
题意:
每个数都可以表示成2的连续次方和加上一个r
例如:12 = 1 + 2 + 4 + 5,
17 = 1 + 2 + 4 + 8 + 2,
现在给你这些数,让你反过来组成12,17,但是是有不同方案的
看看样列就懂了,问你方案的长度种类
题解:
将所有连续的2^x,处理出来,假设有now个序列
最后剩下的数,我们必须将其放到上面now的尾端,但是我们优先放与当前值最接近的序列尾端,以防大一些的数仍然有位置可以放
处理出满足条件最多序列数
二分最少的能满足条件的序列数,也就是将mid个序列全部插入到上面now-mid个序列尾端,这里贪心选择2^x,x小的
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 1e5+, M = 1e3+, mod = 1e9+,inf = 2e9; LL H[],a[N];
int No,cnt[N],n,cnts;
vector<LL > G,ans;
vector<LL > all[N];
int sum[N],sum2[N];
pair<int,LL> P[N]; void go(LL x) {
int i;
for(i = ; i <= ; ++i) {
if(x < H[i])
break;
}
i--;
for(int j = ; j <= i; ++j) {
cnt[j]--;
if(cnt[j] < ) No = ;
return ;
}
}
int cango(LL x) {
if(x == ) return ;
int ok = ;
for(int i = ; i <= ; ++i) {
if(H[i] <= x) {
cnt[i]--;
if(cnt[i] < ) {
ok = ;
}
}
}
if(ok) {
for(int i = ; i <= ; ++i)
if(H[i] <= x) cnt[i]++;
return ;
}
else return ;
}
int can(LL now) {
for(int i = G.size()-; i >= ; --i) {
int ok = ;
for(int j = ; j <= ; ++j) {
if(G[i] <= H[j] && sum[j-]) {
sum[j-]--;
P[++cnts] = MP(j-,G[i]);
ok = ;
G.pop_back();
break;
}
}
if(!ok) return ;
}
return ;
}
int allcan(int x) {
int j = x+,i = ;
int ok;
while(j <= cnts && i < G.size()) {
if(P[j].second != ) j++;
else if(H[P[j].first+] < G[i]) j++;
else i++,j++;
}
if(i == G.size()) {
return ;
}
else return ;
}
int check(int x) {
x = cnts - x;
if(x > cnts) return ;
if(x == ) return ;
G.clear();
for(int i = ; i <= x; i++) {
for(int j = ; j <= P[i].first; ++j) {
G.push_back(H[j]);
}
if(P[i].second) {
G.push_back(P[i].second);
}
}
//for(int i = 0; i < G.size(); ++i) cout<<G[i]<<" ";cout<<endl;
if(allcan(x)) {
return ;
}
else return ;
}
int main() {
H[] = ;
for(int i = ; i <= ; ++i)H[i] = H[i-]*2LL;
scanf("%d",&n);
for(int i = ; i <= n; ++i) {
scanf("%I64d",&a[i]);
int ok = ;
for(int j = ; j <= ; ++j) {
if(a[i] == H[j]) {
ok = ;
cnt[j]++;
break;
}
}
if(!ok) G.push_back(a[i]);
}
int now = ;
for(int i = ; i >=; --i) {
while(cnt[i]) {
if(cango(H[i])) {
now++;
sum[i]++;
}
else break;
}
}
for(int i = ; i <= ; ++i)
for(int j = ; j <= cnt[i]; ++j) G.push_back(H[i]);
int l= ,r,ans = -,tmpr;
if(can(now)) r = now;
else r = -;
tmpr = r;
for(int i = ; i <= ; ++i) {
for(int j = ; j <= sum[i]; ++j) {
P[++cnts] = MP(i,);
}
}
sort(P+,P+cnts+);
while(l <= r) {
int md = (l + r) >> ;
if(check(md)) {
ans = md;
r = md-;
}
else l = md+;
}
//cout<<ans<<endl;
if(tmpr == -) puts("-1");
else {
for(int i = ans; i <= tmpr; ++i) cout<<i<<" ";
cout<<endl;
}
return ;
}
/*
5
1 2 3 4 5
*/
Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) E. Prairie Partition 二分+贪心的更多相关文章
- Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3)(A.B.C,3道暴力题,C可二分求解)
A. Is it rated? time limit per test:2 seconds memory limit per test:256 megabytes input:standard inp ...
- Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) A B C D 水 模拟 二分 贪心
A. Is it rated? time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) D - Dynamic Problem Scoring
地址:http://codeforces.com/contest/807/problem/D 题目: D. Dynamic Problem Scoring time limit per test 2 ...
- Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) A Is it rated?
地址:http://codeforces.com/contest/807/problem/C 题目: C. Success Rate time limit per test 2 seconds mem ...
- Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) 菜鸡只会ABC!
Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) 全场题解 菜鸡只会A+B+C,呈上题解: A. Bear and ...
- Codeforces Round #409 (rated, Div. 2, based on VK Cup 2017 Round 2)(A.思维题,B.思维题)
A. Vicious Keyboard time limit per test:2 seconds memory limit per test:256 megabytes input:standard ...
- Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) C. Bear and Different Names 贪心
C. Bear and Different Names 题目连接: http://codeforces.com/contest/791/problem/C Description In the arm ...
- Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) B - Bear and Friendship Condition 水题
B. Bear and Friendship Condition 题目连接: http://codeforces.com/contest/791/problem/B Description Bear ...
- Codeforces Round #409 (rated, Div. 2, based on VK Cup 2017 Round 2) D. Volatile Kite
地址:http://codeforces.com/contest/801/problem/D 题目: D. Volatile Kite time limit per test 2 seconds me ...
随机推荐
- python 03 8/25-8/27 range 、randint
import random """字符串的操作中 三种方法,只包含左索引,不包含右索引""" hi= "bokeyuan pyth ...
- 第一讲:vcs simulation basic
要求: 1.complie a verilog/systemverilog design using vcs 2.simulate a verilog/systemverilog design vcs ...
- 高可用技术之keepalived原理简单了解
Keepalived 工作原理 keepalived是以VRRP协议为实现基础的,VRRP全称Virtual Router Redundancy Protocol,即虚拟路由冗余协议. 虚拟路由冗余协 ...
- 阿里云配置tomcat后不能访问问题
问题:使用阿里云centos 7.2配置好tomcat后,启动时间9分多钟,停在webapps下的manage这里近9分多钟 解决:进入 /usr/local/jdk1.8.0_144/jre/lib ...
- LeetCode(52) N-Queens II
题目 Follow up for N-Queens problem. Now, instead outputting board configurations, return the total nu ...
- ASP.NET MVC______VS2012
1,在VS2010中,选中指定的代码段,可以拖拽到工具箱中,形成标签,以后还想书写类似的代码,双击鼠标即可. 2,在VS2012中,可以在注释上标注//TODO:我是注释 这样,注释就会出现在任务列表 ...
- bzoj 3207 花神的嘲讽计划Ⅰ 主席树+hash
花神的嘲讽计划Ⅰ Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3112 Solved: 1086[Submit][Status][Discuss] ...
- 任意两点间最短距离floyd-warshall ---- POJ 2139 Six Degrees of Cowvin Bacon
floyd-warshall算法 通过dp思想 求任意两点之间最短距离 重复利用数组实现方式dist[i][j] i - j的最短距离 for(int k = 1; k <= N; k++) f ...
- 建设DevOps统一运维监控平台,先从日志监控说起
https://blog.csdn.net/jessise_zhan/article/details/80129915 https://blog.csdn.net/JThink_/article/de ...
- cobbler ks文件解释--转载
cobbler中ks.cfg文件配置详解 许多系统管理员宁愿使用自动化的安装方法来安装红帽企业 Linux.为了满足这种需要,红帽创建了kickstart安装方法.使用kickstart ...