DP(Dynamic programming)——尽力学习之中(2016 HUAS ACM 暑假集训-5)
这周不打算按照以往的方式更新博客,而是采用整体的方式。一是因为学的太少,没东西写;二是这篇博客会经常更新的。如题,DP——尽力学习之中。
------------------------------------------------------------------------------------------------------------------------------------------------------------------
先说几个与训练不太相关的东西
一、DP分类:
基础DP、线形DP、概率DP、区间DP、树形DP、数位DP、状态压缩DP......
------------------------------------------------------------------------------------------------------------------------------------------------------------------
二、DP问题满足的性质:
①最优子结构性质:如果问题的最优解所包含的子问题的解也是最优的,则称该问题具有最优子结构性质(也称满足最优化原理)。
②子问题重叠性质:在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态规划利用这种子问题的重叠性质,对每一个子问题只计算一次(记忆化搜索),然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而效率较高。
③无后效性:将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。
------------------------------------------------------------------------------------------------------------------------------------------------------------------
心得总结:
DP之一:基础DP(背包) 借鉴资料——背包九讲
Case1:0 1背包:有N件物品,每种物体只有一种(第i种物品的价值是value[i],所占空间是volume[i]),决策只有拿与不拿。给定背包总空间V,求在不超过V的情况下的 MAX value。
若用f[i][V]表示前i件物品恰放入一个容量为V的背包可以获得的最大价值,对于物品i,两种策略:
1.如果拿:则value = ( f[i-1][ V-volume[i] ] ) + value[i]; //前i-1件物品value+第i件物品value
2.如果不拿:则value = f[i-1][V].
于是很容易得到状态转移方程:f[i][V] = max( f[i-1][V] , f[i-1][V-volume[i] + value[i] )
采用一维数组的话:用f[0...V]表示,f[V]表示把前i件物品放入容量为V的背包里得到的价值。
表示方法:dp[j] = max ( dp[ j ] , dp[ j - volume[i] ] + value[i] )
------------------------------------------------------------------------------------------------------------------------------------------------------------------
Case2:完全背包:有N件物品,每种物体有无限种(第i种物品的价值是value[i],所占空间是volume[i]),决策是拿多少件。给定背包总空间V,求在不超过V的情况下的 MAX value。
0 1背包和完全背包非常相似,只是一个顺序(对于物品i,完全背包可以拿多次,所以是顺序,0 1背包只能拿一次,所以是逆序)不同,为方便起见,把两者的核心代码写在一起。
顺便提一下,在顺序上,与你采用的数组有关。用二维数组的话,0 1背包也是可以顺序的。但是我们为了节约空间,一般采用一维数组,所以要注意顺序。
for(int i=0; i<n; i++)//n件物品
{
for(int j=m; j>=volume[i]; j--)//逆序->0 1背包 //for(int j=volume[i]; j<=m; j++)//顺序->完全背包
dp[j] = max( dp[j], dp[ j - volume[i] ] + value[i] );//比较第i种与第j种所得价值的大小
}
cout << dp[m] << endl;
训练中遇到的:
第四周训练的M题(0 1 背包)http://acm.hust.edu.cn/vjudge/contest/125308#problem/M
第五周训练的G题(完全背包)http://acm.hust.edu.cn/vjudge/contest/126708#problem/G
------------------------------------------------------------------------------------------------------------------------------------------------------------------
Case3:多重背包:有N件物品,第i种物体有n[i]种(第i种物品的价值是value[i],所占空间是volume[i])。给定背包总空间V,求在不超过V的情况下的 MAX value。
对于多重背包,可在完全背包的基础上进行修改,与之不同的是,对于第i件物品,有n[i]+1种策略(取0~n[i]件)。
于是可以得出状态转移方程(二维数组表示):f[i][V] = max( f[i-1][V] , f[i-1][V - k*volume[i]] + k*value[i])(0<=k<=n[i] )
一维数组表示:dp[j] = max( dp[j] , dp[i-1][V - k*volume[i]] + k*value[i] )
如果数据量比较大,多重背包复杂度比较高,建议优化。下面仅提供几种参考
1.若两件物品i、j满足volume[i]<=volume[j]且value[i]>=value[j],则将物品j去掉,这个优化显然正确。因为任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。这个优化可以简单的O(N^2)地实现,一般都可以承受。
2.针对背包而言,可以首先将费用大于V的物品去掉,然后使用类似计数排序的做法,计算出费用相同的物品中价值最高的是哪个,可以O(V+N)地完成这个优化。
3.还可以考虑把完全背包转化为0 1背包来解,最简单的想法是:将一种物品拆成多件物品。
4.更高效的转化方法是(二进制优化):把第i种物品拆成费用为volume*2^k、价值为value*2^k的若干件物品,其中k满足0<=k<=log2(V/volume)+1。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。这样把每种物品拆成O(log2(V/volume))件物品,这是一个很不错的优化。
训练中遇到的:第五周的H题:http://acm.hust.edu.cn/vjudge/contest/126708#problem/H
背包暂时写到这里,混合背包看着有点晕,以后更新。
------------------------------------------------------------------------------------------------------------------------------------------------------------------
DP之二:线性DP(不定时更新中......)
Case1:最长递增子序列问题(LIS)
Case2:最长公共子序列问题(LCS)
Case3:子集和问题(subset sum)
DP(Dynamic programming)——尽力学习之中(2016 HUAS ACM 暑假集训-5)的更多相关文章
- [LeetCode] 198. House Robber _Easy tag: Dynamic Programming
You are a professional robber planning to rob houses along a street. Each house has a certain amount ...
- Python算法之动态规划(Dynamic Programming)解析:二维矩阵中的醉汉(魔改版leetcode出界的路径数)
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_168 现在很多互联网企业学聪明了,知道应聘者有目的性的刷Leetcode原题,用来应付算法题面试,所以开始对这些题进行" ...
- 强化学习三:Dynamic Programming
1,Introduction 1.1 What is Dynamic Programming? Dynamic:某个问题是由序列化状态组成,状态step-by-step的改变,从而可以step-by- ...
- 动态规划 Dynamic Programming 学习笔记
文章以 CC-BY-SA 方式共享,此说明高于本站内其他说明. 本文尚未完工,但内容足够丰富,故提前发布. 内容包含大量 \(\LaTeX\) 公式,渲染可能需要一些时间,请耐心等待渲染(约 5s). ...
- 动态规划算法(Dynamic Programming,简称 DP)
动态规划算法(Dynamic Programming,简称 DP) 浅谈动态规划 动态规划算法(Dynamic Programming,简称 DP)似乎是一种很高深莫测的算法,你会在一些面试或算法书籍 ...
- 动态规划(Dynamic Programming, DP)---- 最大连续子序列和
动态规划(Dynamic Programming, DP)是一种用来解决一类最优化问题的算法思想,简单来使,动态规划是将一个复杂的问题分解成若干个子问题,或者说若干个阶段,下一个阶段通过上一个阶段的结 ...
- 算法导论学习-Dynamic Programming
转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...
- dynamic programming 学习
这是看到一位大神,写的关于dynamic programming的博客,认为很好.简单分析下.然后给出链接. 背景问题就是 有一个国家,全部的国民都很老实憨厚,某天他们在自己的国家发现了十座金矿.而且 ...
- 对动态规划(Dynamic Programming)的理解:从穷举开始(转)
转自:http://janfan.cn/chinese/2015/01/21/dynamic-programming.html 动态规划(Dynamic Programming,以下简称dp)是算法设 ...
随机推荐
- CentOS 7 Hadoop安装配置
前言:我使用了两台计算机进行集群的配置,如果是单机的话可能会出现部分问题.首先设置两台计算机的主机名 root 权限打开/etc/host文件 再设置hostname,root权限打开/etc/hos ...
- 借用Google API在线生成网站二维码地址方法
二维码其实很早就出现了,在国外很多年前就已经在应用了,国内这两年才开始异常的火爆,智能手机的发展,以及微博.微信等移动应用带动了二维码的普及.那么,如果为网址在线生成二维码呢?下面我们就来介绍一下Go ...
- RGB与16进制颜色转换的原理
Integer有进制转换的方法.也可以自己写进制转换的方法.
- Unreal Engine Plugin management
Be aware to remove any dependencies to any modules related to Editor, or else it will end up with fa ...
- 一个非常有意思的css3属性filter
filter这属性貌似可以是img图片在黑白与彩色间转换 filter:grayscale(1)为黑白色,filter:grayscale(0)位彩色,可以用于hover效果 img:hover{fi ...
- 2015-2016最火的Android开源项目--github开源项目集锦(不看你就out了)
标签: Android开发开源项目最火Android项目github 2015-2016最火的Android开源项目 本文整理与集结了近期github上使用最广泛最火热与最流行的开源项目,想要充电与提 ...
- jquery自定义插件——以 选项卡插件为例
一直打算尝试自定义插件,终于付诸实践了,现在把内容发表出来,与大家共勉. 我是根据自己正在用的插件,模仿其源码,实现的自定义插件,完成之后,在网上看相关资料,对自定义插件部分,有了更明确的认识. jq ...
- K-近邻算法
废话不多说,直接放码过来. from numpy import * import operator def createDataSet () : group = array([[,],[,0.1]]) ...
- 常用的7个.htaccess代码组织某个国家的IP访问
htAccess 文件(Hypertext Access file)是Apache Web服务器的一个非常强大的配置文件,对于这个文件,Apache有一堆参数可以让你配置出几乎随心所欲的功能. 使用. ...
- 第三个Sprint团队贡献分
201306114322 邵家文 50分 201306114319 陈俊金 10分 201306114320 李新 10分 201306114324 朱浩龙 10分