FireCaffe

Forrest N. Iandola FireCaffe: near-linear acceleration of deep neural network training on computer clusters 2016.1

Problem statements from data scientists

4 key pain points summarized by Jeff Dean from Google:

1. DNN researchers and users want results of experiments quickly.

2. There is a “patience threshold”: No one wants to wait more than a few days or a week for result.

3. This significantly affects scale of problems that can be tackled.

4. We sometimes optimize for experiment turnaround time, rather than absolute minimal system resources for performing the experiments

Problem analysis

The speed and scalability of distributed algorithm are almost always limited by the overhead of communicating between servers; DNN training is not an exception to this rule.
So the design focuses on the communication enhancement, including:

1. Upgrade to high throughput interconnects, i.e. use high throughput interconnections like IB etc.
2. Decrease the data transmission volume while training, which includes:
  a) Balance carefully between data parallelism and model parallelism
  b) Increase batch size to reduce communication quantity. And identify hyperparameters suitable for large batch size.
  c) Communication data quantity balance among nodes to avoid single point dependency.

Key take-aways

Parallelism Scheme: Model parallelism or Data Parallelism

Model parallelism

Each worker gets a subset of the model parameters, and the workers communication by exchanging data gradients and exchanging activations . and data quantity is:

Data parallelism

Each worker gets a subset of the batch, and then the workers communicate by exchanging weight gradient updates , where and data quantity is:

Convolution layer and fully connection layer have different characteristics in data/weight ratio. So they can use different parallelism schemes.


So a basic conclusion is: convolution layers can be fitted into data parallelism, and fc layers can be fitted into model parallelism.
Further more, for more advanced CNNs like GoogLeNet and ResNet etc., we can directly use data parallelism, as this paper is using.

Gradient Aggregation Scheme: Parameter Server or Reduction Tree

One picture to show how parameter server and reduction tree work in data parallelism.

Parameter Server

Parameter communication time with regard to worker number in parameter server scheme.

The communication time scales linearly as we increase the number of workers. single parameter server becomes scalability bottleneck.
Microsoft Adam and Google DistBelief relief this issue by defining a poll of nodes taht colelctively behave as a parameter server. The bigger the parameter server hierarchy gets, the more it looks like a reduction tree.

Reduction Tree

The idea is same as allreduce in message passing model. Parameter communication time with regard to worker number in reduction tree scheme.

It scales logrithmatically as the number of workers.

Batch size selection

Larger batch size lead to less frequent communication and therefore enable more scalability in a distributed setting. But for larger batch size, we need identify a suitable hyperparameter setting to maintain the speed and accuracy produced in DNN training.
Hyperparameters includes:

1. Initial learning rate

2. learning rate update scheme

3. weight delay

4. momentum

Weight update rule used, here means iteration index:


Learning rate update rule:

On how to get hyperparameters according to batch size, I will write another article for this.

Results

Final results on GPU cluster w/ GoogleNet.

More thinking

1. 以上方案基本上是无损的,为了更进一步减少通信开销,大家开始尝试有损的方案,在训练速度和准确度之间进行折衷。典型的有:

1). Reduce parameter size using 16-bit floating-point - Google
     2). Use 16-bit weights and 8-bit activations.
     3). 1-bit gradients backpropagation - Microsoft
     4). Discard gradients whose numerical values fall below a certain threshold - Amazon
     5). Compress(e.g. using PCA) weights before transmitting
     6). Network pruning/encoding/quantization - Intel, DeePhi
2. 使用新的底层技术来减少通信开销 - Matrix
     1) RDMA rather than traditional TCP/IP?

[专题论文阅读]【分布式DNN训练系统】 FireCaffe的更多相关文章

  1. 暑假第二弹:基于docker的hadoop分布式集群系统的搭建和测试

    早在四月份的时候,就已经开了这篇文章.当时是参加数据挖掘的比赛,在计科院大佬的建议下用TensorFlow搞深度学习,而且要在自己的hadoop分布式集群系统下搞. 当时可把我们牛逼坏了,在没有基础的 ...

  2. 分布式链路追踪系统Sleuth和ZipKin

    1.微服务下的链路追踪讲解和重要性 简介:讲解什么是分布式链路追踪系统,及使用好处 进行日志埋点,各微服务追踪. 2.SpringCloud的链路追踪组件Sleuth 1.官方文档 http://cl ...

  3. 基于zipkin分布式链路追踪系统预研第一篇

    本文为博主原创文章,未经博主允许不得转载. 分布式服务追踪系统起源于Google的论文“Dapper, a Large-Scale Distributed Systems Tracing Infras ...

  4. 高性能分布式内存队列系统beanstalkd(转)

    beanstalkd一个高性能.轻量级的分布式内存队列系统,最初设计的目的是想通过后台异步执行耗时的任务来降低高容量Web应用系统的页面访问延迟,支持过有9.5 million用户的Facebook ...

  5. 转: 透过CAT,来看分布式实时监控系统的设计与实现

    评注: 开源的分布式监控系统 转:http://www.infoq.com/cn/articles/distributed-real-time-monitoring-and-control-syste ...

  6. Cola:一个分布式爬虫框架 - 系统架构 - Python4cn(news, jobs)

    Cola:一个分布式爬虫框架 - 系统架构 - Python4cn(news, jobs) Cola:一个分布式爬虫框架 发布时间:2013-06-17 14:58:27, 关注:+2034, 赞美: ...

  7. zipkin分布式链路追踪系统

    基于zipkin分布式链路追踪系统预研第一篇   分布式服务追踪系统起源于Google的论文“Dapper, a Large-Scale Distributed Systems Tracing Inf ...

  8. 分布式日志收集系统Apache Flume的设计详细介绍

    问题导读: 1.Flume传输的数据的基本单位是是什么? 2.Event是什么,流向是怎么样的? 3.Source:完成对日志数据的收集,分成什么打入Channel中? 4.Channel的作用是什么 ...

  9. Apache shiro集群实现 (七)分布式集群系统下---cache共享

    Apache shiro集群实现 (一) shiro入门介绍 Apache shiro集群实现 (二) shiro 的INI配置 Apache shiro集群实现 (三)shiro身份认证(Shiro ...

随机推荐

  1. Hadoop总结篇之三---一个Job到底被提交到哪去了

    我们会定义Job,我们会定义map和reduce程序.那么,这个Job到底是怎么提交的?提交到哪去了?它到底和集群怎么进行交互的呢? 这篇文章将从头讲起. 开发hadoop的程序时,一共有三大块,也就 ...

  2. C# 会可能需要的扩展

     1. List 转成DataSet      /// <summary> /// 集合数据转成 DataSet /// </summary> /// <typepara ...

  3. C# 抽象类abstract

    不能初始化的类被叫做抽象类,它们只提供部分实现,但是另一个类可以继承它并且能创建它们的实例,有未被实现的方法.抽象类不可以new对象. "一个包含一个或多个纯虚函数的类叫抽象类,抽象类不能被 ...

  4. CentOS下Apache开启Gzip网页压缩功能

    1.进入/etc/httpd/conf下打开httpd.conf文件 开启Gzip压缩功能,即去掉LoadModule deflate_module modules/mod_deflate.so这行前 ...

  5. 增强VPS SSH账号安全:改端口,禁用Root,密钥登录,Denyhosts防暴力攻击

    VPS SSH账号是我们日常管理VPS的主要登入方式,尤其是Root账号,对Linux系统安全至关重要.以前好多站长喜欢用Putty中文版,这实际是别人修改官方Putty汉化而来,这些软件被植入了后门 ...

  6. pip China

    建个文件 ~/.pip/pip.conf, 内容如下 [global] index-url = http://b.pypi.python.org/simple [install] use-mirror ...

  7. BAE log服务的配置(nodejs)

    log4js.loadAppender('baev3-log'); var options = { 'user': appConfig.AK, //这里是在用户的安全认证中的Access Key ID ...

  8. zz剖析为什么在多核多线程程序中要慎用volatile关键字?

    [摘要]编译器保证volatile自己的读写有序,但由于optimization和多线程可以和非volatile读写interleave,也就是不原子,也就是没有用.C++11 supposed会支持 ...

  9. 一个简单的TabItem样式。

    分享一个以前项目中用到的简单的TabItem样式. 效果图如下: <SolidColorBrush x:Key="TabItemDisabledBackground" Col ...

  10. Node ExpressJs server的路径设置

    一.动态页面的路径: app.METHOD(PATH, HANDLER)Where: * app is an instance of express.* METHOD is an HTTP reque ...