[专题论文阅读]【分布式DNN训练系统】 FireCaffe
FireCaffe
Forrest N. Iandola FireCaffe: near-linear acceleration of deep neural network training on computer clusters 2016.1
Problem statements from data scientists
4 key pain points summarized by Jeff Dean from Google:
1. DNN researchers and users want results of experiments quickly.
2. There is a “patience threshold”: No one wants to wait more than a few days or a week for result.
3. This significantly affects scale of problems that can be tackled.
4. We sometimes optimize for experiment turnaround time, rather than absolute minimal system resources for performing the experiments
Problem analysis
The speed and scalability of distributed algorithm are almost always limited by the overhead of communicating between servers; DNN training is not an exception to this rule.
So the design focuses on the communication enhancement, including:
1. Upgrade to high throughput interconnects, i.e. use high throughput interconnections like IB etc.
2. Decrease the data transmission volume while training, which includes:
a) Balance carefully between data parallelism and model parallelism
b) Increase batch size to reduce communication quantity. And identify hyperparameters suitable for large batch size.
c) Communication data quantity balance among nodes to avoid single point dependency.
Key take-aways
Parallelism Scheme: Model parallelism or Data Parallelism
Model parallelism
Each worker gets a subset of the model parameters, and the workers communication by exchanging data gradients and exchanging activations
.
and
data quantity is:
Data parallelism
Each worker gets a subset of the batch, and then the workers communicate by exchanging weight gradient updates , where
and
data quantity is:
Convolution layer and fully connection layer have different characteristics in data/weight ratio. So they can use different parallelism schemes.
So a basic conclusion is: convolution layers can be fitted into data parallelism, and fc layers can be fitted into model parallelism.
Further more, for more advanced CNNs like GoogLeNet and ResNet etc., we can directly use data parallelism, as this paper is using.
Gradient Aggregation Scheme: Parameter Server or Reduction Tree
One picture to show how parameter server and reduction tree work in data parallelism.
Parameter Server
Parameter communication time with regard to worker number in parameter server scheme.
The communication time scales linearly as we increase the number of workers. single parameter server becomes scalability bottleneck.
Microsoft Adam and Google DistBelief relief this issue by defining a poll of nodes taht colelctively behave as a parameter server. The bigger the parameter server hierarchy gets, the more it looks like a reduction tree.
Reduction Tree
The idea is same as allreduce in message passing model. Parameter communication time with regard to worker number in reduction tree scheme.
It scales logrithmatically as the number of workers.
Batch size selection
Larger batch size lead to less frequent communication and therefore enable more scalability in a distributed setting. But for larger batch size, we need identify a suitable hyperparameter setting to maintain the speed and accuracy produced in DNN training.
Hyperparameters includes:
1. Initial learning rate
2. learning rate update scheme
3. weight delay
4. momentum
Weight update rule used, here means iteration index:
Learning rate update rule:
On how to get hyperparameters according to batch size, I will write another article for this.
Results
Final results on GPU cluster w/ GoogleNet.
More thinking
1. 以上方案基本上是无损的,为了更进一步减少通信开销,大家开始尝试有损的方案,在训练速度和准确度之间进行折衷。典型的有:
1). Reduce parameter size using 16-bit floating-point - Google
2). Use 16-bit weights and 8-bit activations.
3). 1-bit gradients backpropagation - Microsoft
4). Discard gradients whose numerical values fall below a certain threshold - Amazon
5). Compress(e.g. using PCA) weights before transmitting
6). Network pruning/encoding/quantization - Intel, DeePhi
2. 使用新的底层技术来减少通信开销 - Matrix
1) RDMA rather than traditional TCP/IP?
[专题论文阅读]【分布式DNN训练系统】 FireCaffe的更多相关文章
- 暑假第二弹:基于docker的hadoop分布式集群系统的搭建和测试
早在四月份的时候,就已经开了这篇文章.当时是参加数据挖掘的比赛,在计科院大佬的建议下用TensorFlow搞深度学习,而且要在自己的hadoop分布式集群系统下搞. 当时可把我们牛逼坏了,在没有基础的 ...
- 分布式链路追踪系统Sleuth和ZipKin
1.微服务下的链路追踪讲解和重要性 简介:讲解什么是分布式链路追踪系统,及使用好处 进行日志埋点,各微服务追踪. 2.SpringCloud的链路追踪组件Sleuth 1.官方文档 http://cl ...
- 基于zipkin分布式链路追踪系统预研第一篇
本文为博主原创文章,未经博主允许不得转载. 分布式服务追踪系统起源于Google的论文“Dapper, a Large-Scale Distributed Systems Tracing Infras ...
- 高性能分布式内存队列系统beanstalkd(转)
beanstalkd一个高性能.轻量级的分布式内存队列系统,最初设计的目的是想通过后台异步执行耗时的任务来降低高容量Web应用系统的页面访问延迟,支持过有9.5 million用户的Facebook ...
- 转: 透过CAT,来看分布式实时监控系统的设计与实现
评注: 开源的分布式监控系统 转:http://www.infoq.com/cn/articles/distributed-real-time-monitoring-and-control-syste ...
- Cola:一个分布式爬虫框架 - 系统架构 - Python4cn(news, jobs)
Cola:一个分布式爬虫框架 - 系统架构 - Python4cn(news, jobs) Cola:一个分布式爬虫框架 发布时间:2013-06-17 14:58:27, 关注:+2034, 赞美: ...
- zipkin分布式链路追踪系统
基于zipkin分布式链路追踪系统预研第一篇 分布式服务追踪系统起源于Google的论文“Dapper, a Large-Scale Distributed Systems Tracing Inf ...
- 分布式日志收集系统Apache Flume的设计详细介绍
问题导读: 1.Flume传输的数据的基本单位是是什么? 2.Event是什么,流向是怎么样的? 3.Source:完成对日志数据的收集,分成什么打入Channel中? 4.Channel的作用是什么 ...
- Apache shiro集群实现 (七)分布式集群系统下---cache共享
Apache shiro集群实现 (一) shiro入门介绍 Apache shiro集群实现 (二) shiro 的INI配置 Apache shiro集群实现 (三)shiro身份认证(Shiro ...
随机推荐
- Mac下安装nginx
试图折腾了一下手动安装,太多依赖,繁琐的要死.只好装了一个homebrew , 具体安装homebrew的教程网上查吧,就是一句话(ruby -e "$(curl -fsSL https:/ ...
- js声明json数据,打印json数据,遍历json数据
1.js声明json数据: 2.打印json数据: 3.遍历json数据 //声明JSON var json = {}; json.a = 1; //第一种赋值方式(仿对象型) json['b'] = ...
- JS获取地址栏参数的方法
1. window.location.href 2.正则方法 function getUrlParam(name) { var reg = new RegExp("(^|&)&quo ...
- 检测文件是否有BOM 头,并删除BOM头(php)
将下面文件放在网站根目录访问即可,它会遍历当前目录下所有子目录,检测文件是否含有BOM头,并删除BOM头 <?php //remove the utf-8 boms //by magicbug ...
- vs 配置宏
Win_$(PROCESSOR_ARCHITECTURE)_$(PlatformArchitecture) <==> Win_x86_64 OR Win_x86_32$(Configura ...
- maven项目引用外部jar
问题描述: 有一个java maven web项目,需要引入一个第三方包gdal.jar,但是这个包是自己打包的,在maven中央库里面找不到该包,因此我采用传统的方式,将这个包拷贝到:项目名称\sr ...
- delphi cmd
今天看到有人在问用代码执行CMD命令的问题,就总结一下用法,也算做个备忘. Delphi中,执行命令或者运行一个程序有2个函数,一个是winexec,一个是shellexecute.这两个大家应该都见 ...
- [DFNews] Cellebrite UFED系列更新, 支持IOS7
10月15日,Cellebrite公司对旗下产品进行了更新,包括UFED Classic.UFED Touch.Physical Analyzer.Logical Analyzer.Phone Det ...
- Django 开发投票系统
主要参考官方文档 Windows 10 Python 23.5 Django 1.9 1.创建项目(mysite)与应用(polls) D:\python>django-admin.py st ...
- prototype.js简介
prototype.js简介 2007-11-21 14:22 prototype.js是一个很强大的Javascript函数库,它可以让你很轻松的使用一些特效,实现AJAX的功能.虽然prototy ...