FireCaffe

Forrest N. Iandola FireCaffe: near-linear acceleration of deep neural network training on computer clusters 2016.1

Problem statements from data scientists

4 key pain points summarized by Jeff Dean from Google:

1. DNN researchers and users want results of experiments quickly.

2. There is a “patience threshold”: No one wants to wait more than a few days or a week for result.

3. This significantly affects scale of problems that can be tackled.

4. We sometimes optimize for experiment turnaround time, rather than absolute minimal system resources for performing the experiments

Problem analysis

The speed and scalability of distributed algorithm are almost always limited by the overhead of communicating between servers; DNN training is not an exception to this rule.
So the design focuses on the communication enhancement, including:

1. Upgrade to high throughput interconnects, i.e. use high throughput interconnections like IB etc.
2. Decrease the data transmission volume while training, which includes:
  a) Balance carefully between data parallelism and model parallelism
  b) Increase batch size to reduce communication quantity. And identify hyperparameters suitable for large batch size.
  c) Communication data quantity balance among nodes to avoid single point dependency.

Key take-aways

Parallelism Scheme: Model parallelism or Data Parallelism

Model parallelism

Each worker gets a subset of the model parameters, and the workers communication by exchanging data gradients and exchanging activations . and data quantity is:

Data parallelism

Each worker gets a subset of the batch, and then the workers communicate by exchanging weight gradient updates , where and data quantity is:

Convolution layer and fully connection layer have different characteristics in data/weight ratio. So they can use different parallelism schemes.


So a basic conclusion is: convolution layers can be fitted into data parallelism, and fc layers can be fitted into model parallelism.
Further more, for more advanced CNNs like GoogLeNet and ResNet etc., we can directly use data parallelism, as this paper is using.

Gradient Aggregation Scheme: Parameter Server or Reduction Tree

One picture to show how parameter server and reduction tree work in data parallelism.

Parameter Server

Parameter communication time with regard to worker number in parameter server scheme.

The communication time scales linearly as we increase the number of workers. single parameter server becomes scalability bottleneck.
Microsoft Adam and Google DistBelief relief this issue by defining a poll of nodes taht colelctively behave as a parameter server. The bigger the parameter server hierarchy gets, the more it looks like a reduction tree.

Reduction Tree

The idea is same as allreduce in message passing model. Parameter communication time with regard to worker number in reduction tree scheme.

It scales logrithmatically as the number of workers.

Batch size selection

Larger batch size lead to less frequent communication and therefore enable more scalability in a distributed setting. But for larger batch size, we need identify a suitable hyperparameter setting to maintain the speed and accuracy produced in DNN training.
Hyperparameters includes:

1. Initial learning rate

2. learning rate update scheme

3. weight delay

4. momentum

Weight update rule used, here means iteration index:


Learning rate update rule:

On how to get hyperparameters according to batch size, I will write another article for this.

Results

Final results on GPU cluster w/ GoogleNet.

More thinking

1. 以上方案基本上是无损的,为了更进一步减少通信开销,大家开始尝试有损的方案,在训练速度和准确度之间进行折衷。典型的有:

1). Reduce parameter size using 16-bit floating-point - Google
     2). Use 16-bit weights and 8-bit activations.
     3). 1-bit gradients backpropagation - Microsoft
     4). Discard gradients whose numerical values fall below a certain threshold - Amazon
     5). Compress(e.g. using PCA) weights before transmitting
     6). Network pruning/encoding/quantization - Intel, DeePhi
2. 使用新的底层技术来减少通信开销 - Matrix
     1) RDMA rather than traditional TCP/IP?

[专题论文阅读]【分布式DNN训练系统】 FireCaffe的更多相关文章

  1. 暑假第二弹:基于docker的hadoop分布式集群系统的搭建和测试

    早在四月份的时候,就已经开了这篇文章.当时是参加数据挖掘的比赛,在计科院大佬的建议下用TensorFlow搞深度学习,而且要在自己的hadoop分布式集群系统下搞. 当时可把我们牛逼坏了,在没有基础的 ...

  2. 分布式链路追踪系统Sleuth和ZipKin

    1.微服务下的链路追踪讲解和重要性 简介:讲解什么是分布式链路追踪系统,及使用好处 进行日志埋点,各微服务追踪. 2.SpringCloud的链路追踪组件Sleuth 1.官方文档 http://cl ...

  3. 基于zipkin分布式链路追踪系统预研第一篇

    本文为博主原创文章,未经博主允许不得转载. 分布式服务追踪系统起源于Google的论文“Dapper, a Large-Scale Distributed Systems Tracing Infras ...

  4. 高性能分布式内存队列系统beanstalkd(转)

    beanstalkd一个高性能.轻量级的分布式内存队列系统,最初设计的目的是想通过后台异步执行耗时的任务来降低高容量Web应用系统的页面访问延迟,支持过有9.5 million用户的Facebook ...

  5. 转: 透过CAT,来看分布式实时监控系统的设计与实现

    评注: 开源的分布式监控系统 转:http://www.infoq.com/cn/articles/distributed-real-time-monitoring-and-control-syste ...

  6. Cola:一个分布式爬虫框架 - 系统架构 - Python4cn(news, jobs)

    Cola:一个分布式爬虫框架 - 系统架构 - Python4cn(news, jobs) Cola:一个分布式爬虫框架 发布时间:2013-06-17 14:58:27, 关注:+2034, 赞美: ...

  7. zipkin分布式链路追踪系统

    基于zipkin分布式链路追踪系统预研第一篇   分布式服务追踪系统起源于Google的论文“Dapper, a Large-Scale Distributed Systems Tracing Inf ...

  8. 分布式日志收集系统Apache Flume的设计详细介绍

    问题导读: 1.Flume传输的数据的基本单位是是什么? 2.Event是什么,流向是怎么样的? 3.Source:完成对日志数据的收集,分成什么打入Channel中? 4.Channel的作用是什么 ...

  9. Apache shiro集群实现 (七)分布式集群系统下---cache共享

    Apache shiro集群实现 (一) shiro入门介绍 Apache shiro集群实现 (二) shiro 的INI配置 Apache shiro集群实现 (三)shiro身份认证(Shiro ...

随机推荐

  1. OAF_开发系列17_实现OAF数组应用Vector / Hashmap / Hashtable / Arraylist(案例)

    20150506 Created By BaoXinjian

  2. java 泛型编程学习

    先发布,以后有空再修改... 第一次看到<java核心技术卷一>中关于泛型这部分的时候感觉很复杂,似乎有说不完的约束条件,让人难以理解.当时只是囫囵吞枣般过了一遍,也没有看出个什么来.现在 ...

  3. EventBus--出现的问题

    --- 1 , EventBus收不到消息问题. 项目中遇到的问题,做搜索商品的时候遇到, 1.情况是一个FragmentActivity包含四个碎片Fragment,在FragmentActivit ...

  4. oracle rac自动生成awr

    cat awr.sql ######EXEC P_AWR_REPORT('201604251000', '201604251100', 'D_OUTPUT', '', FALSE); FALSE为ra ...

  5. 无需Try catch 的UI事件封装类

    在UI处理中,经常需要进行异常处理,以便在错误发生时能够进行一些自定义的操作,比如,弹出消息框给用户,进行重试操作,记录日志等,如果能够让用户写代码时不用写try...catch,而只是关注业务逻辑的 ...

  6. JAVA的界面(Swing)

    现在的程序很多在java中运行,很多时候是Web;很多服务端还是有一个简单的日志文件比较好:或者配置: 今天在看java图形界面开发时,看见已经不怎么更新的库.没有办法,市场决定一切,很多好的东西没有 ...

  7. 说说Timing这回事(转载)

    本文原始位置:FPGANotes Blog http://wiki.fpganotes.com/doku.php/ise:timing:my_summary Intro 问:一个FPGA设计项目需要用 ...

  8. js判断是否是移动设备登陆网页

    var browser = {            versions: function () {                var u = navigator.userAgent, app = ...

  9. logging 日志模块学习

    logging 日志模块,用于记录系统在运行过程中的一些关键信息,以便于对系统的运行状况进行跟踪,所以还是灰常重要滴,下面我就来从入门到放弃的系统学习一下日志既可以在屏幕上显示,又可以在文件中体现. ...

  10. JS实现div动态水平垂直居中

    在做页面的过程中,在很多地方都会遇到元素需要水平垂直的居中这个问题,之前总是去网上搜别人的代码,今天仔细研究了一下,分享给大家,先写一个简单的例子: <div class="mui-c ...