欧拉回路

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 15491    Accepted Submission(s): 5921

Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
 
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
 
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
 
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
 
Sample Output
1
0
 
Author
ZJU
 
Source
 
Recommend
We have carefully selected several similar problems for you:  1880 1881 1864 1873 1859 
欧拉道路:若图G中存在一条道路,刚好经过所有的边一次,则成为欧拉道路,若经过所有边之后又回到原点,就是欧拉回路

以下判断基于此图的基图连通。
1.无向图存在欧拉回路的充要条件
         一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图。
2.有向图存在欧拉回路的充要条件
         一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图。
3.混合图存在欧拉回路条件
        要判断一个混合图G(V,E)(既有有向边又有无向边)是欧拉图,方法如下:
                假设有一张图有向图G',在不论方向的情况下它与G同构。并且G'包含了G的所有有向边。那么如果存在一个图G'使得G'存在欧拉回路,那么G就存在欧拉回路。
               其思路就将混合图转换成有向图判断。实现的时候,我们使用网络流的模型。现任意构造一个G'。用Ii表示第i个点的入度,Oi表示第i个点的出度。如果存在一个点k,|Ok-Ik|mod 2=1,那么G不存在欧拉回路。接下来则对于所有Ii>Oi的点从源点连到i一条容量为(Ii-Oi)/2的边,对于所有Ii<Oi的点从i连到汇点一条容量为(Oi-Ii)/2的边。如果对于节点U和V,无向边(U,V)∈E,那么U和V之间互相建立容量为无限大的边。如果此网络的最大流等于∑|Ii-Oi|/2,那么就存在欧拉回路。
对于有向图,可以用并查集判断图是否连通,记录每一个顶点的度数来判读是否存在欧拉回路。
代码:
#include<iostream>
#include<cstring>
#include<cstdio> using namespace std;
const int N = + ;
int pre[N],in[N];
int Find(int x){
return pre[x]==x?x:(pre[x]=Find(pre[x]));
} void Merge(int x,int y){
x = Find(x),y=Find(y);
if(x!=y) pre[x] = y;
} int main(){
int n,m;
while(scanf("%d",&n)==&&n){
scanf("%d",&m);
for(int i=;i<=n;i++) pre[i] = i,in[i] = ;
int a,b;
while(m--){
scanf("%d %d",&a,&b);
Merge(a,b);
in[a]++; in[b]++;
}
bool is_euor = true;
int cnt = ;
for(int i=;i<=n;i++) if(pre[i]==i) cnt++;
if(cnt > ) {puts(""); continue;}
for(int i=;i<=n;i++) if(in[i]&) {is_euor = false; break;}
printf("%d\n",is_euor?:);
}
return ;
}


HDU-1878 欧拉回路(并查集,欧拉回路性质)的更多相关文章

  1. HDU1878 欧拉回路---(并查集+图论性质)

    http://acm.hdu.edu.cn/showproblem.php?pid=1878 欧拉回路 Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  2. HDU 1116 Play on Words(欧拉回路+并查集)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1116 Play on Words Time Limit: 10000/5000 MS (Java/Ot ...

  3. hdu 1116 欧拉回路+并查集

    http://acm.hdu.edu.cn/showproblem.php?pid=1116 给你一些英文单词,判断所有单词能不能连成一串,类似成语接龙的意思.但是如果有多个重复的单词时,也必须满足这 ...

  4. HDU 1116 || POJ 1386 || ZOJ 2016 Play on Words (欧拉回路+并查集)

    题目链接 题意 : 有很多门,每个门上有很多磁盘,每个盘上一个单词,必须重新排列磁盘使得每个单词的第一个字母与前一个单词的最后一个字母相同.给你一组单词问能不能排成上述形式. 思路 :把每个单词看成有 ...

  5. hdu 3018 Ant Trip 欧拉回路+并查集

    Ant Trip Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem ...

  6. K - 欧拉回路(并查集)

    点击打开链接 K - 欧拉回路 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个图,问是否存在欧拉回路? Input 测试输入包含若干测试用例.每个测试用例的第 ...

  7. hdu3018 Ant Trip (并查集+欧拉回路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3018 题意:给你一个图,每条路只能走一次.问至少要多少个人才能遍历所有的点和所有的边. 这是之前没有接 ...

  8. ACM: FZU 2112 Tickets - 欧拉回路 - 并查集

     FZU 2112 Tickets Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u P ...

  9. POJ2513——Colored Sticks(Trie树+欧拉回路+并查集)

    Colored Sticks DescriptionYou are given a bunch of wooden sticks. Each endpoint of each stick is col ...

随机推荐

  1. 郭盛华现身北京机场,颇有IT男的风范,网友:疑似被招安了

    郭盛华纵横互联网江湖数十年,他白手起家,凭着过人的勇敢.智慧和绝技,身经百战,显赫辉煌,成为中外闻名的互联网安全领域大师级人物. 郭盛华的网络技术指导方面经验丰富实力深厚.他是中国互联网安全领域的传奇 ...

  2. 【GDOI2016模拟4.22】总结

    前言 早上,一进机房,发现所有人神情严肃,一股(\(da\))(\(ba\))场的气氛迎面扑来,我一下子意识到:nothing good! 这场比赛结果不是很好,50分: 第一题:感觉上是个神奇的匹配 ...

  3. 【bzoj4552】【Tjoi2016&Heoi2016】【NOIP2016模拟7.12】排序

    题目 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这个全排列序列进行m次 ...

  4. facebook第三方登陆实践

    未完,待续... 1.注册 到Facebook官网注册开发者账号,创建应用(开发者平台 https://developers.facebook.com),如果尚未注册账号的请注册账号并进行登录) 注册 ...

  5. [洛谷2257]YY的GCD 题解

    整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...

  6. Oracle Where子句

    Oracle Where子句 作者:初生不惑 Oracle基础 评论:0 条 Oracle技术QQ群:175248146 在本教程中,将学习如何使用Oracle WHERE子句来指定过滤的条件返回符合 ...

  7. JMH简介

    JMH是新的microbenchmark(微基准测试)框架(2013年首次发布).与其他众多框架相比它的特色优势在于,它是由Oracle实现JIT的相同人员开发的.特别是我想提一下Aleksey Sh ...

  8. SpringMVC传参注解@RequestParam,@RequestBody,@ResponseBody,@ModelAttribute

    参考文档:https://blog.csdn.net/walkerjong/article/details/7946109 https://www.cnblogs.com/daimajun/p/715 ...

  9. progress组件(进度条)

    progress组件:进度条 progress组件的属性: percent:类型:number 设置百分比 (0~100) show-info:类型:布尔 在进度条右侧显示百分比 border-rad ...

  10. Android传感器系统架构【转】

    本文转载自:http://blog.csdn.net/qianjin0703/article/details/5942579 版权声明:本文为博主原创文章,未经博主允许不得转载. 1. 体系结构 2. ...