欧拉回路

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 15491    Accepted Submission(s): 5921

Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
 
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
 
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
 
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
 
Sample Output
1
0
 
Author
ZJU
 
Source
 
Recommend
We have carefully selected several similar problems for you:  1880 1881 1864 1873 1859 
欧拉道路:若图G中存在一条道路,刚好经过所有的边一次,则成为欧拉道路,若经过所有边之后又回到原点,就是欧拉回路

以下判断基于此图的基图连通。
1.无向图存在欧拉回路的充要条件
         一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图。
2.有向图存在欧拉回路的充要条件
         一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图。
3.混合图存在欧拉回路条件
        要判断一个混合图G(V,E)(既有有向边又有无向边)是欧拉图,方法如下:
                假设有一张图有向图G',在不论方向的情况下它与G同构。并且G'包含了G的所有有向边。那么如果存在一个图G'使得G'存在欧拉回路,那么G就存在欧拉回路。
               其思路就将混合图转换成有向图判断。实现的时候,我们使用网络流的模型。现任意构造一个G'。用Ii表示第i个点的入度,Oi表示第i个点的出度。如果存在一个点k,|Ok-Ik|mod 2=1,那么G不存在欧拉回路。接下来则对于所有Ii>Oi的点从源点连到i一条容量为(Ii-Oi)/2的边,对于所有Ii<Oi的点从i连到汇点一条容量为(Oi-Ii)/2的边。如果对于节点U和V,无向边(U,V)∈E,那么U和V之间互相建立容量为无限大的边。如果此网络的最大流等于∑|Ii-Oi|/2,那么就存在欧拉回路。
对于有向图,可以用并查集判断图是否连通,记录每一个顶点的度数来判读是否存在欧拉回路。
代码:
#include<iostream>
#include<cstring>
#include<cstdio> using namespace std;
const int N = + ;
int pre[N],in[N];
int Find(int x){
return pre[x]==x?x:(pre[x]=Find(pre[x]));
} void Merge(int x,int y){
x = Find(x),y=Find(y);
if(x!=y) pre[x] = y;
} int main(){
int n,m;
while(scanf("%d",&n)==&&n){
scanf("%d",&m);
for(int i=;i<=n;i++) pre[i] = i,in[i] = ;
int a,b;
while(m--){
scanf("%d %d",&a,&b);
Merge(a,b);
in[a]++; in[b]++;
}
bool is_euor = true;
int cnt = ;
for(int i=;i<=n;i++) if(pre[i]==i) cnt++;
if(cnt > ) {puts(""); continue;}
for(int i=;i<=n;i++) if(in[i]&) {is_euor = false; break;}
printf("%d\n",is_euor?:);
}
return ;
}


HDU-1878 欧拉回路(并查集,欧拉回路性质)的更多相关文章

  1. HDU1878 欧拉回路---(并查集+图论性质)

    http://acm.hdu.edu.cn/showproblem.php?pid=1878 欧拉回路 Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  2. HDU 1116 Play on Words(欧拉回路+并查集)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1116 Play on Words Time Limit: 10000/5000 MS (Java/Ot ...

  3. hdu 1116 欧拉回路+并查集

    http://acm.hdu.edu.cn/showproblem.php?pid=1116 给你一些英文单词,判断所有单词能不能连成一串,类似成语接龙的意思.但是如果有多个重复的单词时,也必须满足这 ...

  4. HDU 1116 || POJ 1386 || ZOJ 2016 Play on Words (欧拉回路+并查集)

    题目链接 题意 : 有很多门,每个门上有很多磁盘,每个盘上一个单词,必须重新排列磁盘使得每个单词的第一个字母与前一个单词的最后一个字母相同.给你一组单词问能不能排成上述形式. 思路 :把每个单词看成有 ...

  5. hdu 3018 Ant Trip 欧拉回路+并查集

    Ant Trip Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem ...

  6. K - 欧拉回路(并查集)

    点击打开链接 K - 欧拉回路 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个图,问是否存在欧拉回路? Input 测试输入包含若干测试用例.每个测试用例的第 ...

  7. hdu3018 Ant Trip (并查集+欧拉回路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3018 题意:给你一个图,每条路只能走一次.问至少要多少个人才能遍历所有的点和所有的边. 这是之前没有接 ...

  8. ACM: FZU 2112 Tickets - 欧拉回路 - 并查集

     FZU 2112 Tickets Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u P ...

  9. POJ2513——Colored Sticks(Trie树+欧拉回路+并查集)

    Colored Sticks DescriptionYou are given a bunch of wooden sticks. Each endpoint of each stick is col ...

随机推荐

  1. 多个excel文件内容合并到一个excel文件的多个sheet的小程序

    # -*- coding:utf-8 -*- import xlrd, xlsxwriter # 待合并excelallxls = ["D:\\excelcs\\***.xlsx" ...

  2. Spring5最新完整教程IDEA版【通俗易懂2019.11月】

    1.Maven找包: spring-webmvc spring-jdbc 2.Spring的本质是控制反转,依靠依赖注入来实现.以一个servcie对象为例,即是service暴露注入接口(构造,se ...

  3. 系统符号二——正则表达式及三剑客之grep

    一基础正则表达式 (一)^  匹配以什么开头的信息 [root@centos71 ~]# grep "^root" /etc/passwd root:x:0:0:root:/roo ...

  4. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  5. 6.20校内考试整理——大美江湖&&腐草为萤&&锦鲤抄题解

    先安利一下题目作者:一扶苏一 先看第一题: 这道题就是一道简单的模拟题,只要不管一开始的位置,模拟移动与格子对应的触发事件就行了.话不多说,看代码: #include<iostream> ...

  6. [CSP-S模拟测试]:集合论(模拟)

    题目传送门(内部题73) 输入格式 输入文件$jihe.in$ 第一行一个整数$m$,表示操作的次数. 接下来$m$行,每行描述一个操作. 每行的开始都是一个数字,$1,2,3,4$依次代表$unio ...

  7. CDQ求子矩阵的和

    Description维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=20000 ...

  8. 图解SQLSERVER联合查询和连接查询的区别

      相信很多人都会用SQLSERVER联合查询和连接查询,但是用起来不一定都得心应手,对于其中的原理可能就模糊不清了,要想很牢固地掌握和运用SQL联合查询和连接查询机制,必须对其根本原理有很清晰认识, ...

  9. SQLSTATE[HY000] [2002] No such file or directory

    正常的解决办法.. 只需将laravel配置文件中的host 127.0.0.1改成localhost就可以: 'mysql' => array(            'driver'    ...

  10. datatbales的数据源类型(Data source types)

    数据是复杂的,并且所有的数据是不一样的.因此 DataTables 中有很多的选项可用于配置如何获得表中的数据显示,以及如何处理这些复杂的数据. 本节将讨论 DataTables 处理数据的三个核心概 ...