"Shortest" pair of paths
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1215   Accepted: 491

Description

A chemical company has an unusual shortest path problem.

There are N depots (vertices) where chemicals can be stored. There are M individual shipping methods (edges) connecting pairs of depots. Each individual shipping method has a cost. In the usual problem, the company would need to find a way to route a single shipment from the first depot (0) to the last (N - 1). That's easy. The problem they have seems harder. They have to ship two chemicals from the first depot (0) to the last (N - 1). The chemicals are dangerous and cannot safely be placed together. The regulations say the company cannot use the same shipping method for both chemicals. Further, the company cannot place the two chemicals in same depot (for any length of time) without special storage handling --- available only at the first and last depots. To begin, they need to know if it's possible to ship both chemicals under these constraints. Next, they need to find the least cost of shipping both chemicals from first depot to the last depot. In brief, they need two completely separate paths (from the first depot to the last) where the overall cost of both is minimal.

Your program must simply determine the minimum cost or, if it's not possible, conclusively state that the shipment cannot be made.

Input

The input will consist of multiple cases. The first line of each input will contain N and M where N is the number of depots and M is the number of individual shipping methods. You may assume that N is less than 64 and that M is less than 10000. The next M lines will contain three values, i, j, and v. Each line corresponds a single, unique shipping method. The values i and j are the indices of two depots, and v is the cost of getting from i to j. Note that these shipping methods are directed. If something can be shipped from i to j with cost 10, that says nothing about shipping from j to i. Also, there may be more than one way to ship between any pair of depots, and that may be important here. 
A line containing two zeroes signals the end of data and should not be processed.

Output

follow the output format of sample output.

Sample Input

2 1
0 1 20
2 3
0 1 20
0 1 20
1 0 10
4 6
0 1 22
1 3 11
0 2 14
2 3 26
0 3 43
0 3 58
0 0

Sample Output

Instance #1: Not possible
Instance #2: 40
Instance #3: 73

Source

题意:

m条有向边连接了n个仓库,每条边都有一定费用。

将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。

求最小的费用是多少。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
#define MM(a,b) memset(a,b,sizeof(a))
typedef long long ll;
typedef unsigned long long ULL;
const int mod = 1000000007;
const double eps = 1e-10;
const int inf = 0x3f3f3f3f;
const int big=50000;
int max(int a,int b) {return a>b?a:b;};
int min(int a,int b) {return a<b?a:b;};
const int N = 70;
const int M=10000+100;
struct edge{
int to,cap,cost,rev;
};
vector<edge> G[1005];
int dist[1005],inq[1005],prev[1005],prel[1005];
int n,m,x,y,c;
void add_edge(int u,int v,int cost)
{
G[u].push_back(edge{v,1,cost,G[v].size()});
G[v].push_back(edge{u,0,-cost,G[u].size()-1});
}
int mincost(int s,int t,int f)
{
int ans=0;
while(f>0)
{
memset(dist,inf,sizeof(dist));
memset(inq,0,sizeof(inq));
dist[s]=0;
queue<int> q;
q.push(s);
inq[s]=1;
MM(prev,-1);
while(!q.empty())
{
int u=q.front();
q.pop();inq[u]=0;
for(int j=0;j<G[u].size();j++)
{
edge &e=G[u][j];
if(e.cap>0&&dist[e.to]>dist[u]+e.cost)
{
dist[e.to]=dist[u]+e.cost;
prev[e.to]=u;
prel[e.to]=j;
if(!inq[e.to])
{
q.push(e.to);
inq[e.to]=1;
}
}
}
}
for(int i=t;i>s;)
{
int f=prev[i];
if(f==-1) return -1;//不存在符合要求的路径则退出
int j=prel[i];
G[f][j].cap-=1;
G[i][G[f][j].rev].cap+=1;
ans+=G[f][j].cost;
i=prev[i];
}
f-=1;//因为每条边容量都为1
}
return ans;
} int main()
{
int kk=0;
while(~scanf("%d %d",&n,&m)&&(n||m))
{
for(int i=0;i<n;i++) G[i].clear();
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&x,&y,&c);
add_edge(x,y,c);
}
int ans=mincost(0,n-1,2);
if(ans==-1) printf("Instance #%d: Not possible\n",++kk);
else printf("Instance #%d: %d\n",++kk,ans);
}
return 0;
}

  分析:最小费用流模板题,直接套的模板,刚开始忘记清空数组被TLE了

POJ 3068 运送危险化学品 最小费用流 模板题的更多相关文章

  1. POJ 1287 Networking【kruskal模板题】

    传送门:http://poj.org/problem?id=1287 题意:给出n个点 m条边 ,求最小生成树的权 思路:最小生树的模板题,直接跑一遍kruskal即可 代码: #include< ...

  2. POJ 1502 MPI Maelstrom(模板题——Floyd算法)

    题目: BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distri ...

  3. POJ 1470 Closest Common Ancestors (模板题)(Tarjan离线)【LCA】

    <题目链接> 题目大意:给你一棵树,然后进行q次询问,然后要你统计这q次询问中指定的两个节点最近公共祖先出现的次数. 解题分析:LCA模板题,下面用的是离线Tarjan来解决.并且为了代码 ...

  4. POJ 3264 Balanced Lineup(模板题)【RMQ】

    <题目链接> 题目大意: 给定一段序列,进行q次询问,输出每次询问区间的最大值与最小值之差. 解题分析: RMQ模板题,用ST表求解,ST表用了倍增的原理. #include <cs ...

  5. POJ 1330 Nearest Common Ancestors (模板题)【LCA】

    <题目链接> 题目大意: 给出一棵树,问任意两个点的最近公共祖先的编号. 解题分析:LCA模板题,下面用的是树上倍增求解. #include <iostream> #inclu ...

  6. POJ:Dungeon Master(三维bfs模板题)

    Dungeon Master Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16748   Accepted: 6522 D ...

  7. POJ:3461-Oulipo(KMP模板题)

    原题传送:http://poj.org/problem?id=3461 Oulipo Time Limit: 1000MS Memory Limit: 65536K Description The F ...

  8. POJ 2195 Going Home 最小费用流 裸题

    给出一个n*m的图,其中m是人,H是房子,.是空地,满足人的个数等于房子数. 现在让每个人都选择一个房子住,每个人只能住一间,每一间只能住一个人. 每个人可以向4个方向移动,每移动一步需要1$,问所有 ...

  9. POJ 1269 - Intersecting Lines - [平面几何模板题]

    题目链接:http://poj.org/problem?id=1269 Time Limit: 1000MS Memory Limit: 10000K Description We all know ...

随机推荐

  1. (4.15)mysql备份还原——物理备份之XtraBackup的下载与安装

    关键词:mysql物理备份,XtraBackup,XtraBackup安装,XtraBackup下载 实践链接:https://www.cnblogs.com/gered/p/11147193.htm ...

  2. Hanlp配置自定义词典遇到的问题与解决方法

    本文是整理了部分网友在配置hanlp自定义词典时遇到的一小部分问题,同时针对这些问题,也提供另一些解决的方案以及思路.这里分享给大家学习参考. 要使用hanlp加载自定义词典可以通过修改配置文件han ...

  3. C++学习 之 控制程序流程 (笔记)

    1.使用if...else有条件的执行 在一些时候语句需要进行有条件的执行.比如如果输入"Y"就执行赋值语句N=1:否则N=0: #include<iostream> ...

  4. Codeforces 1196E. Connected Component on a Chessboard

    传送门 注意到棋盘可以看成无限大的,那么只要考虑如何构造一个尽可能合法的情况 不妨假设需要的白色格子比黑色格子少 那么容易发现最好的情况之一就是白色排一排然后中间黑的先连起来,剩下黑色的再全部填白色周 ...

  5. spring boot JPA 数据库连接池释放

    当JPA获取数据库数据连接时,如果连接数超过最大连接数的配置,系统就会报错: Unable to acquire JDBC Connection 和: Caused by: java.sql.SQLT ...

  6. call,apply,bind的理解

    call,apply,bind均是用于改变this指向. 三者相似之处: 1:都是用于改变函数的this指向. 2:第一个参数都是this要指向的对象. 3:都可以通过后面的参数进行对方法的传参. l ...

  7. elastic 基本操作

    官方参考文档: https://www.elastic.co/guide/cn/elasticsearch/guide/current/index-doc.html 1.查看 有哪些索引: curl ...

  8. nginx服务学习第二章

    nginx.config文件中字符串不显示高亮 nginx服务搭建完成后,查看nginx.config的时候发现没有高亮字符,要想配置文件出现高亮方便观看,需要修改一些配置文件,修改步骤如下: # m ...

  9. 模块之-os模块

    模块之-os模块 >>> import os >>> os.getcwd() #获取当前工作目录 'C:\\Users\\Administrator' >&g ...

  10. Runtime.getRuntime.exec()执行linux脚本导致程序卡死问题

    rumtime程序执行中出现卡住,执行成果达不到预期的标准.查看输出流以及错误流程是否内存占满了.开两个线程来运行输出流程和错误流程. rumtime运行windows脚本执行是要添加执行环境 cmd ...