洛谷P1441 砝码称重

\(n\) 的范围为 \(n \le 20\) ,\(m\) 的范围为 \(m \le 4\) 。

暴力遍历每一种砝码去除情况,共有 \(n^m\) 种情况。

对于剩余砝码求解可以组合的重量种类数。使用bitset进行求解优化,第 \(i\) 位为 \(1\) 代表重量 \(i\) 可以组合出来。\(1\) 的位数即为最终答案。

初始 \(bitset[0]=1\) ,对于新加砝码 \(i\) ,重量为 \(a[i]\) ,更新为 \(bitset = bitset\ |\ (bitset << a[i])\) 。

时间复杂度为 \(O(n^m \times n\times \text{bitset单次操作时间})\) 。

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<bitset> using namespace std; const int maxn = 25;
const int maxm = 2005;
int n, m, ans, sum;
int vis[maxn], a[maxn], f[maxm]; void solve()
{
bitset<maxm> cnt;
cnt[0] = 1;
for(int i = 1; i <= n; i++){
if(vis[i] == 1) continue;
cnt = cnt | (cnt << a[i]);
}
int ret = cnt.count();
ans = max(ans, ret - 1);
}
void dfs(int now, int step)
{
if(step == m + 1){
solve();
return;
}
for(int i = now; i <= n; i++){
vis[i] = 1;
dfs(i + 1, step + 1);
vis[i] = 0;
}
}
int main()
{
scanf("%d%d", &n, &m);
sum = 0;
for(int i = 1; i <= n; i++){
scanf("%d", &a[i]);
sum += a[i];
}
ans = 0;
dfs(1, 1);
printf("%d\n", ans);
return 0;
}

洛谷P1441 砝码称重(搜索,dfs+bitset优化)的更多相关文章

  1. 洛谷P1441 砝码称重(搜索,dfs+dp)

    洛谷P1441 砝码称重 \(n\) 的范围为 \(n \le 20\) ,\(m\) 的范围为 \(m \le 4\) . 暴力遍历每一种砝码去除情况,共有 \(n^m\) 种情况. 对于剩余砝码求 ...

  2. 洛谷P1441 砝码称重

    P1441 砝码称重 题目描述 现有n个砝码,重量分别为a1,a2,a3,……,an,在去掉m个砝码后,问最多能称量出多少不同的重量(不包括0). 输入输出格式 输入格式: 输入文件weight.in ...

  3. 洛谷 P1441 砝码称重

    题目描述 现有n个砝码,重量分别为a1,a2,a3,……,an,在去掉m个砝码后,问最多能称量出多少不同的重量(不包括0). 输入输出格式 输入格式: 输入文件weight.in的第1行为有两个整数n ...

  4. 洛谷P1441 砝码称重 枚举 + 01背包

    显然,n<=20, m<=4 的数据范围一眼爆搜. 直接搜索一下不用哪4个砝码,再做一遍01背包即可. 可能是本人太菜鸡,01背包部分调了半天QAQ-- #include<cstdi ...

  5. 洛谷 P2347 砝码称重

    P2347 砝码称重 题目描述 设有1g.2g.3g.5g.10g.20g的砝码各若干枚(其总重<=1000), 输入输出格式 输入格式: 输入方式:a1 a2 a3 a4 a5 a6 (表示1 ...

  6. 洛谷P2347 砝码称重 [2017年4月计划 动态规划01]

    P2347 砝码称重 题目描述 设有1g.2g.3g.5g.10g.20g的砝码各若干枚(其总重<=1000), 输入输出格式 输入格式: 输入方式:a1 a2 a3 a4 a5 a6 (表示1 ...

  7. 洛谷P1411 砝码称重

    传送门啦 这个题总体思路就是先搜索在 $ dp $ void dfs(int keep,int now){ //使用 放弃 if(now > m) return; //已经放弃超过m个了,就退出 ...

  8. 洛谷P2347 砝码称重 【多重背包】(方案数)(经典)

    题目链接:https://www.luogu.org/problemnew/show/P2347 题目描述 设有1g.2g.3g.5g.10g.20g的砝码各若干枚(其总重<=1000), 输入 ...

  9. 洛谷 P2347 砝码称重 != codevs 2144

    题目描述 设有1g.2g.3g.5g.10g.20g的砝码各若干枚(其总重<=1000), 输入输出格式 输入格式: 输入方式:a1 a2 a3 a4 a5 a6 (表示1g砝码有a1个,2g砝 ...

随机推荐

  1. Oracle删除表时候有外键 不能删除

    SELECT    A .constraint_name,    A .table_name,    b.constraint_nameFROM    user_constraints A,    u ...

  2. Sentinel之熔断降级

    除了流量控制以外,对调用链路中不稳定的资源进行熔断降级也是保障高可用的重要措施之一.由于调用关系的复杂性,如果调用链路中的某个资源不稳定,最终会导致请求发生堆积.Sentinel 熔断降级会在调用链路 ...

  3. django shell的基本使用

    作者:python技术人 博客:https://www.cnblogs.com/lpdeboke/ 在日常工作再发中,经常需要测试一些对象.函数.类...等是否正确,但是如果整体运行项目特别麻烦,并且 ...

  4. ES6精解:变量的解构赋值

    1.数组的解构赋值 我们知道以前我们给一个变量赋值要这样如下: let a = 1; let b = 2; let c = 3; 但是ES6出来之后,我们可以这样: let [a, b, c] = [ ...

  5. P2876 [USACO07JAN]解决问题Problem Solving

    传送门 显然的 $dp$,设 $f[i][j]$ 表示做完第 $i$ 题,此月做的题的区间为 $[j,i]$ 需要的最少月数 每个月记得分成还钱并写新题,和只还钱分类讨论,不要搞成每个月强制做一题 那 ...

  6. 2019-8-14-win10-使用-SMB-v1

    title author date CreateTime categories win10 使用 SMB v1 lindexi 2019-08-14 08:55:55 +0800 2018-2-13 ...

  7. AD转换为KiCAD的方法

    一.Altium文件转KiCad文件 本文主要介绍: 1.AD文件(SCH和PCB)转换为KiCAD的方法 2.AD封装库转换为KiCAD库的方法 下面让我们进入正题 1.1 PCB的第一种转换方式 ...

  8. Sumdiv(约数和问题)

    题目地址 看到这题的题解,大佬都说是小学奥数,蔡得我不敢鸡声. 求 \(a^b\) 所有的约数之和 mod \(9901\) \((1<=a,b<=5*10^7)\) 题解 做这道题,我还 ...

  9. IncDec Sequence (差分)

    题目地址 这道题可以用来检测一下你是否学会了差分,或者你可以更加透彻的理解差分 我们把 \(cf[]\) (差分)数组拿出了,就可以发现这道题就是每次可以在 \(cf[]\)中 选两个数,一个+1,一 ...

  10. HTML5 中list 和datalist实例

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...