Boost Graph provides tools to work with graphs. Graphas are two-dimensional point clouds with any number of lines between ponts.

Vertices and Edges

1 adjacency_list

#include <boost/graph/adjacency_list.hpp>
#include <iostream> int main() {
boost::adjacency_list<> g; boost::adjacency_list<>::vertex_descriptor v1 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v2 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v3 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v4 = boost::add_vertex(g); std::cout << v1 << ", " << v2 << ", " << v3 << ", " << v4 << std::endl;
return ;
}

输出  0, 1, 2, 3

boost::adjacency_list is a template that is instantiated with default parameters. boost::add_vertex() adds a point to a graph. boost::add_vertex() returns an object of type boost::adjacency_list::vertex_descriptor. This object represents a newly added point in the graph.

std::vector is the container boost::adjacency_list uses by default to store points. In this case, boost::adjacency_list::vertex_descriptor is a type definition for std::size_t. Because other containers can be used to store points, boost::adjacency_list::vertex_descriptor isn't necessarily always std::size_t.

2. vertices()

#include <boost/graph/adjacency_list.hpp>
#include <utility>
#include <algorithm>
#include <iterator>
#include <iostream> int main() {
boost::adjacency_list<> g; boost::add_vertex(g);
boost::add_vertex(g);
boost::add_vertex(g);
boost::add_vertex(g); std::pair<boost::adjacency_list<>::vertex_iterator, boost::adjacency_list<>::vertex_iterator> vs = boost::vertices(g); std::copy(vs.first, vs.second, std::ostream_iterator<boost::adjacency_list<>::vertex_descriptor>{std::cout, "\n"}); return ;
}

To get all points from a graph, call boost::vertices(). This function returns two iterators of type boost::adjacency_list::vertex_iterator, which refer to the beginning and ending points.

3. edges()

#include <boost/graph/adjacency_list.hpp>
#include <utility>
#include <algorithm>
#include <iterator>
#include <iostream> int main() {
boost::adjacency_list<> g; boost::adjacency_list<>::vertex_descriptor v1 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v2 = boost::add_vertex(g);
boost::add_vertex(g);
boost::add_vertex(g); std::pair<boost::adjacency_list<>::edge_descriptor, bool> p = boost::add_edge(v1, v2, g);
std::cout.setf(std::ios::boolalpha);
std::cout << p.second << std::endl; p = boost::add_edge(v1, v2, g);
std::cout << p.second << std::endl; p = boost::add_edge(v2, v2, g);
std::cout << p.second << std::endl; std::pair<boost::adjacency_list<>::edge_iterator, boost::adjacency_list<>::edge_iterator> es = boost::edges(g); std::copy(es.first, es.second, std::ostream_iterator<boost::adjacency_list<>::edge_descriptor>{std::cout, "\n"}); return ;
}

输出:

true

true

true

(0,1)

(0,1)

(1,0)

You call boost::add_edge() to connect two points in a graph. You have to pass the points and the graph as parameters. boost::add_edge() returns a std::pair. first provides access to the line. second is a bool variable that indicates whether the line was successfully added.

boost::edges() provides access to all lines in a graph. boost::edges() returns two iterators that refer to the beginning and ending lines. lines start at the first point, one at the second. The direction of the lines depends on the order of the parameters passed to boost::add_edge().

As you see, you can have multiple lines between the same two points.

4. boost::adjacency_list with selectors

#include <boost/graph/adjacency_list.hpp>
#include <utility>
#include <algorithm>
#include <iterator>
#include <iostream> int main() {
typedef boost::adjacency_list<boost::setS, boost::vecS, boost::undirectedS> graph;
graph g; boost::adjacency_list<>::vertex_descriptor v1 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v2 = boost::add_vertex(g);
boost::add_vertex(g);
boost::add_vertex(g); std::pair<boost::adjacency_list<>::edge_descriptor, bool> p = boost::add_edge(v1, v2, g);
std::cout.setf(std::ios::boolalpha);
std::cout << p.second << std::endl; p = boost::add_edge(v1, v2, g);
std::cout << p.second << std::endl; p = boost::add_edge(v2, v2, g);
std::cout << p.second << std::endl; std::pair<boost::adjacency_list<>::edge_iterator, boost::adjacency_list<>::edge_iterator> es = boost::edges(g); std::copy(es.first, es.second, std::ostream_iterator<boost::adjacency_list<>::edge_descriptor>{std::cout, "\n"}); return ;
}

By default, boost::adjacency_list uses std::vector for points and lines. By passing boost::setS as the first template parameter, std::set is selected as the container for lines.

The second template parameter tells boost::adjacency_list which class should be used for points.

The third template parameter determines whether lines are directed or undirected. The default is boost::directedS, which means all lines are directed and can be drawn as arrows. Lines can only be crossed in one direction.

Boost.Graph offers more selectors, including boost::listS, boost::mapS, and boost::hash_setS. boost::bidirectionalS can be used to make lines bidirectional.

5. creating indexes automatically with boost::add_edge()

#include <boost/graph/adjacency_list.hpp>
#include <tuple>
#include <algorithm>
#include <iterator>
#include <iostream> int main() {
typedef boost::adjacency_list<boost::setS, boost::vecS, boost::undirectedS> graph;
graph g; enum { topLeft, topRight, bottomRight, bottomLeft }; boost::add_edge(topLeft, topRight, g);
boost::add_edge(topRight, bottomRight, g);
boost::add_edge(bottomRight, bottomLeft, g);
boost::add_edge(bottomLeft, topLeft, g); graph::edge_iterator it, end;
std::tie(it, end) = boost::edges(g);
std::copy(it, end, std::ostream_iterator<graph::edge_descriptor>{std::cout, "\n"}); return ;
}

It is possible to define a graph without calling boost::add_vertex(). Boost.Graph adds missing points to a graph automatically if the points passed to boost::add_edge() don't exist.

Containers

except boost::adjacency_list, there are two other graph containers provided by Boost.Graph: boost::adjacency_matrix, boost::compressed_sparse_row_graph.

1. boost::adjacency_matrix

#include <boost/graph/adjacency_matrix.hpp>
#include <array>
#include <utility> int main() {
enum { topLeft, topRight, bottomRight, bottomLeft }; std::array<std::pair<int, int>, > edges{{
std::make_pair(topLeft, topRight);
std::make_pair(topRight, bottomRight);
std::make_pair(bottomRight, bottomLeft);
std::make_pair(bottomLeft, topLeft);
}}; typedef boost::adjacency_matrix<boost::undirectedS> graph;
graph g{edges.beign(), edges.end(), }; return ;
}

The two template parameters that pass selectors don't exist with boost::adjacency_matrix. With boost::adjacency_matrix, no selectors, such as boost::vecS and boost::setS, are used. boost::adjacency_matrix stores the graph in a matrix, and the internal structure is hardcoded. You can think of the matrix as a two-dimensional table: the table is a square with as many rows and columuns as the graph has points. The internal structure of boost::adjacency_matrix makes it possible to add and remove lines quickly. However, memory consumption is highter. The rule of thumb is to use boost::adjacency_list when there are relatively few lines compared to points. The more lines there are, the more it makes sense to use boost::adjacency_matrix.

2. boost::compressed_sparse_row_graph

#include <boost/graph/adjacency_matrix.hpp>
#include <array>
#include <utility> int main() {
enum { topLeft, topRight, bottomRight, bottomLeft }; std::array<std::pair<int, int>, > edges{{
std::make_pair(topLeft, topRight);
std::make_pair(topRight, bottomRight);
std::make_pair(bottomRight, bottomLeft);
std::make_pair(bottomLeft, topLeft);
}}; typedef boost::compressed_sparse_row_graph<boost::bidirectionalS> graph;
graph g{boost::edges_are_unsorted_multi_pass, edges.beign(), edges.end(), }; return ;
}

boost::compressed_sparse_row_graph can't be changed with. Once the graph has been created, points and lines can't be added or removed. Thus, boost::compressed_sparse_rwo_graph makes only sense when using an immutable graph. only supports directed lines and is low memory consumption.

boost graph的更多相关文章

  1. 【转】使用Boost Graph library(二)

    原文转自:http://shanzhizi.blog.51cto.com/5066308/942972 让我们从一个新的图的开始,定义一些属性,然后加入一些带属性的顶点和边.我们将给出所有的代码,这样 ...

  2. 【转】使用Boost Graph library(一)

    转自:http://shanzhizi.blog.51cto.com/5066308/942970 本文是一篇译文,来自:http://blog.csdn.net/jjqtony/article/de ...

  3. Boost Graph Library使用学习

    Boost Graph Library,BGL 使用学习 探索 Boost Graph Library https://www.ibm.com/developerworks/cn/aix/librar ...

  4. Boost Graph Library materials

    Needed to compute max flow in a project and found the official document of BGL to be rather obscure, ...

  5. boost库之graph入门

    #include <boost/graph/undirected_graph.hpp> #include <boost/graph/adjacency_list.hpp> us ...

  6. 转债---Pregel: A System for Large-Scale Graph Processing(译)

    转载:http://duanple.blog.163.com/blog/static/70971767201281610126277/   作者:Grzegorz Malewicz, Matthew ...

  7. 译:Boost Property Maps

    传送门:Boost Graph Library 快速入门 原文:Boost Property Map 图的抽象数学性质与它们被用来解决具体问题之间的主要联系就是被附加在图的顶点和边上的属性(prope ...

  8. Pregel: A System for Large-Scale Graph Processing(译)

    [说明:Pregel这篇是发表在2010年的SIGMOD上,Pregel这个名称是为了纪念欧拉,在他提出的格尼斯堡七桥问题中,那些桥所在的河就叫Pregel.最初是为了解决PageRank计算问题,由 ...

  9. Linux上安装使用boost入门指导

    Data Mining Linux上安装使用boost入门指导 获得boost boost分布 只需要头文件的库 使用boost建立一个简单的程序 准备使用boost二进制文件库 把你的程序链接到bo ...

随机推荐

  1. php面试专题---15、MySQL数据库基础考察点

    php面试专题---15.MySQL数据库基础考察点 一.总结 一句话总结: 注意:只写精品 1.mysql定义int(3),那么我存1234就错了么? 不是:无影响:只会影响显示字符的个数:可以为整 ...

  2. Duplicate entry '4799' for key 'PRIMARY'

    增加1条SQL记录报错: Operation failed: There was an error while applying the SQL script to the database. Exe ...

  3. Linux_自制系统服务启动脚本

    目录 目录 前言 Case语句 Apache 启动脚本 Postfix service 启停脚本 前言 在Linux的某些系统服务中,需要自己定制启动服务的脚本.通常会使用Cash语句来实现. Cas ...

  4. Java 类装载器工作机制

    类装载器就是寻找类的字节码文件并构造出类在JVM内部表示的对象组件.在java中,类装在器把一个类装入JVM中,要经过以下几个步骤: 1.装载:查找和导入Class文件 2链接:执行校验,准备和解析步 ...

  5. Bootstrap 学习笔记10 弹出框和警告框插件

    隐藏还有2个: 警告框:

  6. c#访问webapi以及获取

    提交post #region XML方式提交        public static void XML() {            HttpWebRequest wReq = (HttpWebRe ...

  7. python常用模块(3)

    hashlib模块 hashlib提供了常见的摘要算法,如md5和sha1等等. 那么什么是摘要算法呢?摘要算法又称为哈希算法.散列算法.它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通 ...

  8. [SDOI2019]快速查询

    [SDOI2019]快速查询 [题目链接] 链接 [思路要点] 据说是 \(\text{SDOI2019}\) 最水的题 操作次数为 \(1e7\) 范围,显然要求每次操作 \(\mathcal{O} ...

  9. resultType和resultMap一对一查询小结

    resultType和resultMap一对一查询小结 SELECT orders.*, USER .username,USER.birthday,USER.sex,USER.address FROM ...

  10. HNCPC2019部分题解

    ProblemSet 签到题就不写了. C. Distinct Substrings 先对原串建出SAM,map存边. 由于这题相当于添加一个字符再删除这个字符,添加下一个字符,所以每次都暴力跳后缀链 ...