BZOJ 4939: [Ynoi2016]掉进兔子洞(莫队+bitset)
解题思路
刚开始想到了莫队+\(bitset\)去维护信息,结果发现空间不太够。。试了各种奇技淫巧都\(MLE\),最后\(\%\)了发题解发现似乎可以分段做。。这道题做法具体来说就是开\(3\)个\(bitset\),然后对原序列离散化之后给每个值规定一个开始的位置,之后就可以莫队搞,计算答案是用总的元素个数减去扔掉的,而扔掉的其实就是三个\(bitset\)做与运算后\(1\)的个数,时间复杂度\(O(n\sqrt n+\frac{n^2}{w})\)。\(bzoj\)上时限\(80s\)跑了\(80s\),荣获倒一。
代码
#include<bits/stdc++.h>
using namespace std;
const int N=100005;
const int M=10000;
inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
}
int n,m,a[N],cpy[N],pos[N],u,b[N],siz,num,slen[N];
int ll[N][4],rr[N][4];
struct Data{
int l,r,id,type;
friend bool operator<(const Data A,const Data B){
if(A.l/siz!=B.l/siz) return A.l<B.l;
if((A.l/siz)&1) return A.r>B.r;
return A.r<B.r;
}
Data(int _l=0,int _r=0,int _id=0,int _type=0){
l=_l; r=_r; id=_id; type=_type;
}
}q[N*3];
bitset<N> f[3][10010],g;
#define Add(x) g.set(pos[a[(x)]]++)
#define Del(x) g.reset(--pos[a[(x)]])
void solve(int l,int r){
int tot=0;
for(int i=1;i<=n;i++)
if(b[i]!=b[i-1]) pos[b[i]]=i;
for(int i=l;i<=r;i++){
q[++tot]=Data(ll[i][0],rr[i][0],i-l+1,0);
q[++tot]=Data(ll[i][1],rr[i][1],i-l+1,1);
q[++tot]=Data(ll[i][2],rr[i][2],i-l+1,2);
}
sort(q+1,q+1+tot);
int L=1,R=0; g.reset();
for(int i=1;i<=tot;i++){
while(L>q[i].l) L--,Add(L);
while(R<q[i].r) R++,Add(R);
while(L<q[i].l) Del(L),L++;
while(R>q[i].r) Del(R),R--;
f[q[i].type][q[i].id]=g;
}
for(int i=1;i<=r-l+1;i++){
printf("%d\n",(slen[i+l-1]-3*((f[0][i]&f[1][i]&f[2][i]).count())));
f[0][i].reset(); f[1][i].reset(); f[2][i].reset();
}
}
int main(){
n=rd(),m=rd(); int l1,r1,l2,r2,l3,r3;
for(int i=1;i<=n;i++) a[i]=cpy[i]=rd();
sort(cpy+1,cpy+1+n); siz=sqrt(n);
u=unique(cpy+1,cpy+1+n)-cpy-1;
for(int i=1;i<=n;i++)
a[i]=lower_bound(cpy+1,cpy+1+u,a[i])-cpy;
memcpy(b,a,sizeof(b)); sort(b+1,b+1+n);
for(int i=1;i<=m;i++){
l1=rd(),r1=rd(),l2=rd(),r2=rd(),l3=rd(),r3=rd();
ll[i][0]=l1,ll[i][1]=l2,ll[i][2]=l3;
rr[i][0]=r1,rr[i][1]=r2,rr[i][2]=r3;
slen[i]=r1-l1+1+r2-l2+1+r3-l3+1;
}
for(int i=1;i<=m;i+=M)
solve(i,min(m,i+M-1));
return 0;
}
BZOJ 4939: [Ynoi2016]掉进兔子洞(莫队+bitset)的更多相关文章
- BZOJ.4939.[Ynoi2016]掉进兔子洞(莫队 bitset 分组询问)
BZOJ 洛谷 删掉的数即三个区间数的并,想到bitset:查多个区间的数,想到莫队. 考虑bitset的每一位如何对应每个数的不同出现次数.只要离散化后不去重,每次记录time就可以了. 但是如果对 ...
- [Luogu 4688] [Ynoi2016]掉进兔子洞 (莫队+bitset)
[Luogu 4688] [Ynoi2016]掉进兔子洞 (莫队+bitset) 题面 一个长为 n 的序列 a.有 m 个询问,每次询问三个区间,把三个区间中同时出现的数一个一个删掉,问最后三个区间 ...
- BZOJ4939: [Ynoi2016]掉进兔子洞(莫队 bitset)
题意 题目链接 一个长为 n 的序列 a. 有 m 个询问,每次询问三个区间,把三个区间中同时出现的数一个一个删掉,问最后三个区间剩下的数的个数和,询问独立. 注意这里删掉指的是一个一个删,不是把等于 ...
- BZOJ 4939 [Ynoi2016]掉进兔子洞(莫队+bitset)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4939 [题目大意] 给出一个数列,每个询问给出三个区间,问除去三个区间共有的数字外, ...
- 洛谷P4135 Ynoi2016 掉进兔子洞 (带权bitset?/bitset优化莫队 模板) 题解
题面. 看到这道题,我第一反应就是莫队. 我甚至也猜出了把所有询问的三个区间压到一起处理然后分别计算对应询问答案. 但是,这么复杂的贡献用什么东西存?难道要开一个数组 query_appear_tim ...
- luogu P4688 [Ynoi2016]掉进兔子洞 bitset 莫队
题目链接 luogu P4688 [Ynoi2016]掉进兔子洞 题解 莫队维护bitset区间交个数 代码 // luogu-judger-enable-o2 #include<cmath&g ...
- 【洛谷 P4688】 [Ynoi2016]掉进兔子洞(bitset,莫队)
题目链接 第一道Ynoi 显然每次询问的答案为三个区间的长度和减去公共数字个数*3. 如果是公共数字种数的话就能用莫队+bitset存每个区间的状态,然后3个区间按位与就行了. 但现在是个数,bits ...
- bzoj千题计划320:bzoj4939: [Ynoi2016]掉进兔子洞(莫队 + bitset)
https://www.lydsy.com/JudgeOnline/problem.php?id=4939 ans= r1-l1+1 + r2-l2+1 +r3-l3+1 - ∑ min(cnt1[i ...
- BZOJ4939 Ynoi2016掉进兔子洞(莫队+bitset)
容易发现要求三个区间各数出现次数的最小值.考虑bitset,不去重离散化后and一发就可以了.于是莫队求出每个区间的bitset.注意空间开不下,做多次即可.输出的东西错了都能调一年服了我了. #in ...
随机推荐
- 【Qt开发】【Linux开发】Qt程序在嵌入式设备(arm) 上运行,鼠标擦除界面的解决方案
笔者最近想在arm开发板上,开发一个应用程序,经过网上查询发现qt作为跨平台开发软件很不错,于是便选择了qt开发,笔者的qt版本是4.8.6的.由于arm的主频太低,在arm上进行开发编译,效率会大大 ...
- 使用原生js 获取用户访问项目的浏览器类型
想要获取浏览器的类型很简单,网上提供了很多方法,但是看过之后,都是根据浏览器内核来判断是ie,谷歌,火狐,opeara的, 所以不能进一步判断在国内使用的主流浏览器类型,比如360,百度,搜狐浏览器等 ...
- HashMap源码分析-jdk1.7
注:转载请注明出处!!!!!!!这里咱们看的是JDK1.7版本的HashMap 学习HashMap前先知道熟悉运算符合 *左移 << :就是该数对应二进制码整体左移,左边超出的部分舍弃,右 ...
- C++中的赋值操作符重载和拷贝构造函数
1,关于赋值的疑问: 1,什么时候需要重载赋值操作符? 2,编译器是否提供默认的赋值操作符? 2,关于赋值的疑问: 1,编译器为每个类默认重载了赋值操作符: 1,意味着同类型的类对象可以相互赋值: 2 ...
- 小白学Python(19): Pyinstaller 生成 exe 文件
python 默认并不包含 PyInstaller 模块,因此需要自行安装 PyInstaller 模块. 安装 PyInstaller 模块与安装其他 Python 模块一样,使用 pip 命令安装 ...
- vue : 无法加载文件 C:\Users\XXX\AppData\Roaming\npm\vue.ps1,因为在此系统上禁止运行脚本
问题: 使用命令行安装完成vue/cli后,使用vue ui无法创建demo vue : 无法加载文件 C:\Users\yangx\AppData\Roaming\npm\vue.ps1,因为在此系 ...
- Java Web学习总结(4)HttpServletResponse
Web服务器收到客户端的http请求,会针对每一次请求,分别创建一个用于代表请求的request对象.和代表响应的response对象.获取网页提交过来的数据,只需要找request对象就行了.要向网 ...
- Qt项目界面文件(.ui)及其作用(超详细)
http://c.biancheng.net/view/1820.html Qt 项目中,后缀为“.ui”的文件是可视化设计的窗体的定义文件,如 widget.ui.双击项目文件目录树中的文件 wid ...
- PHP常用采集函数总结
1.获取所有链接内容和地址 function getAllURL($code){ preg_match_all('/<as+href=["|']?([^>"']+)[& ...
- Comet OJ - Contest #3 B -棋盘 (思维+分类讨论)
题目描述 小猫有一个 2\times N2×N 的棋盘,每一个格子放着一个黑棋子或白棋子. 小熊觉得小猫的棋盘不够好看,想要把棋盘上的一部分白棋子替换成黑棋子,使得所有黑棋子都能够在仅允许上下左右四个 ...