DP是真的难啊,感觉始终不入门路,还是太弱了┭┮﹏┭┮

DAG上的DP

​ 一般而言,题目中如果存在明显的严格偏序关系,并且求依靠此关系的最大/最小值,那么考虑是求DAG上的最短路或者是最长路。(据说还有路径计数的问题,我倒是没遇到,哪位大大看见提醒一下呐)

这类问题可以使用记忆化搜索直接解,但是有爆栈的风险。

数据比较大的情况下,可以使用先求拓扑序,然后按照拓扑序(bfs求拓扑序),进行递推即可。

背包问题

1.完全背包

	for (int i = 1; i <= n; i++)
for (int j = w[i]; j <= m; ++j)
f[j] = max(f[j],f[j - w[i]] + v[i]);

完全背包本质就是一个DAG问题,把背包的剩余容量看成状态,边就是物品的体积。

2.01背包

	for (int i = 1; i <= n; i++)
for (int j = 0; j <= m; j++)
if (j < w[i])
f[i][j] = f[i-1][j];
else
f[i][j] = max(f[i-1][j],f[i-1][j-w[i]] + v[i]);

​ 简化后

	for (int i = 1; i <= n; i++)
for (int j = w[i]; j <= m; ++j)
f[j] = max(f[j],f[j - w[i]] + v[i]);

01背包按刘汝佳的话说是一个多阶段决策问题,或者说是二维dp,也即是需要一个维度来考虑对于物品的使用。

3.多重背包

	int	f[N],v[N],w[N],n;
for (int i = 1; i <= n0; i++)
{
cin >> wi >> vi >> ci;
for (int j = 1; j <= ci; j <<= 1;)
{
++n;
v[n] = vi * j;
w[n] = wi * j;
ci -= j;
}
if (c > 0)
{
++n;
v[n] = vi * c;
w[n] = wi * c;
}
}
for (int i = 1 ; i <= n; i++)
for (int j = m ; j >= w[i]; j--)
{
f[j] = max(f[j],f[j-w[i]] + v[i]);
}

​ 把未知模型拆分为已知的模型, 把多重背包拆分成多个01背包,具体原则就是把一个数用logn(n为重复个数)来进行表示,使得物品的数量变成O(nlogm),然后复杂度变为O(nmlogm)

4.分组背包

	for (int i = 1 ; i <= n; i++)
for (int j = m; j >= 0; j--)
for (int k = 1; k <= len[i]; k++)
{
if(j - g[i][k])
f[j] = max(f[j],f[j-w[i][k]]+v[i][k]);
}

​ 在01背包的基础上,每个物品属于一个组,每组中的物品是互斥的。

5.树形背包

​ 在01背包的基础上,每个物品可能依赖于某个其他物品(需要选定某个前驱物品,才能选这个物品)

​ 1.得到dfs序,和每个结点对应的最远子树结点r

​ 2.按照dfs序从后往前,对于每件物品,考虑它选/不选两种情况如果不选,对应的整颗子树也不选,变成dfs序中子树最后一个的下一个 如果选,变成dfs序中的下一个。

LIS问题

​ dp[i]表示序列1~i的LCS,进行dp转移即可。

	for (int i = 1; i <= n ; i++)
for (int j = 1; j < i; j++)
if (j < i) dp[i] = max(dp[i],dp[j]+1)

​ 可以用树状数组优化,最终结果为dp[n]

LCS问题

​ dp[i][j]表示第一个序列1i,第二个序列1j位置的LCS。

	for(int i = 1; i <= n1; i++)
for(int j = 1;j<=n2;j++)
if (i==j)dp[i][j] = dp[i-1][j-1]+1;
else dp[i][j] = max(dp[i-1][J],dp[i][j-1]);
最终结果为dp[n1][n2];

DP---DAG、背包、LIS、LCS的更多相关文章

  1. 线性DP总结(LIS,LCS,LCIS,最长子段和)

    做了一段时间的线性dp的题目是时候做一个总结 线性动态规划无非就是在一个数组上搞嘛, 首先看一个最简单的问题: 一,最长字段和 下面为状态转移方程 for(int i=2;i<=n;i++) { ...

  2. dp入门(LIS,LCS)

    LCS

  3. USACO Money Systems Dp 01背包

    一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...

  4. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

  5. NYOJ16|嵌套矩形|DP|DAG模型|记忆化搜索

    矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a& ...

  6. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  7. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

  8. HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化)

    HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化) 题意分析 首先C表示测试数据的组数,然后给出经费的金额和大米的种类.接着是每袋大米的 ...

  9. HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包)

    HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包) 题意分析 裸完全背包 代码总览 #include <iostream> #include <cstdio& ...

  10. HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包)

    HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包) 题意分析 裸的完全背包问题 代码总览 #include <iostream> #include <cstdio> ...

随机推荐

  1. CABasicAnimation animationWithKeyPath Types

    转自:http://www.cnblogs.com/pengyingh/articles/2379631.html CABasicAnimation animationWithKeyPath 一些规定 ...

  2. mock.js模拟ajax数据请求

    在我们开发过程中存在着前端页面ui完成了,但是没有接口进行联调数据的情况,现在介绍一下用mock.js来完成数据的请求.这样在后期我们的后台接口完成后只需要更改请求的接口名字即可!前提是你的模拟字段名 ...

  3. Linux openssh8.0p1升级步骤

    前期准备开启本机telnet服务,以防openssh升级失败无法连接服务器.注:redhat 5 6 和 redhat7 开机启动配置相关文件不同,请注意 1.安装zlibtar -xzvf zlib ...

  4. DDD领域驱动设计初探(六):领域服务

    前言:之前一直在搭建项目架构的代码,有点偏离我们的主题(DDD)了,这篇我们继续来聊聊DDD里面另一个比较重要的知识点:领域服务.关于领域服务的使用,书中也介绍得比较晦涩,在此就根据博主自己的理解谈谈 ...

  5. maven 依赖显示红线 pom文件不显示红线的一种可能问题

    pom文件引用的是CDH的jar包 而没有配置CDH的仓库 导致maven找不到资源  ,依赖显示红色波浪,并且在仓库内生成了一堆.lastupdate文件 解决: 1. 删除本地仓库内所有的.las ...

  6. App开发工具

    软件下载: 链接:https://pan.baidu.com/s/1yaAko1svHW3v3kdn6mSgxQ提取码:rrcd 参考文档地址: http://dev.dcloud.net.cn/mu ...

  7. day1 instance,round,divmod,imput, 字符串

      >>> a = '123' >>> isinstance(a, str) True >>> b = 1 >>> type(b ...

  8. 包、time、datetime、hashlib和hmac、request、re

    目录 包 包的特点 time模块 datetime模块 hashlib模块和hmac模块 hmac密钥(加盐) typing模块 request模块 正则模块 以下必须得记住 哪些做了解 包 包,这里 ...

  9. linux-LVM磁盘扩容

    查看磁盘 [ops@stock_kline_database ~]$ sudo fdisk -l 磁盘 /dev/sda: 字节, 个扇区 Units = 扇区 of * = bytes 扇区大小(逻 ...

  10. tomcat 启动一傘而过问题

    tomcat 启动一傘而过问题 D:\apache-tomcat-7.0.75\bin startup.bat打开记事本打开 第一行:设置启动环境变量JAVA_HOME,CATALINA_HOME S ...