read_excel()

加载函数为read_excel(),其具体参数如下。

read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None,names=None, parse_cols=None, parse_dates=False,date_parser=None,na_values=None,thousands=None, convert_float=True, has_index_names=None, converters=None,dtype=None, true_values=None, false_values=None, engine=None, squeeze=False, **kwds)

常用参数解析:

  • io : string, path object ; excel 路径。

  • sheetname : string, int, mixed list of strings/ints, or None, default 0 返回多表使用sheetname=[0,1],若sheetname=None是返回全表 注意:int/string 返回的是dataframe,而none和list返回的是dict of dataframe

  • header : int, list of ints, default 0 指定列名行,默认0,即取第一行,数据为列名行以下的数据 若数据不含列名,则设定 header = None

  • skiprows : list-like,Rows to skip at the beginning,省略指定行数的数据

  • skip_footer : int,default 0, 省略从尾部数的int行数据

  • index_col : int, list of ints, default None指定列为索引列,也可以使用u”strings”

  • names : array-like, default None, 指定列的名字。

数据源:

sheet1:
ID NUM-1 NUM-2 NUM-3
36901 142 168 661
36902 78 521 602
36903 144 600 521
36904 95 457 468
36905 69 596 695 sheet2:
ID NUM-1 NUM-2 NUM-3
36906 190 527 691
36907 101 403 470

(1)函数原型

basestation ="F://pythonBook_PyPDAM/data/test.xls"
data = pd.read_excel(basestation)
print data

输出:是一个dataframe

      ID  NUM-1  NUM-2  NUM-3
0 36901 142 168 661
1 36902 78 521 602
2 36903 144 600 521
3 36904 95 457 468
4 36905 69 596 695

(2) sheetname参数:返回多表使用sheetname=[0,1],若sheetname=None是返回全表 注意:int/string 返回的是dataframe,而none和list返回的是dict of dataframe

data_1 = pd.read_excel(basestation,sheetname=[0,1])
print data_1
print type(data_1)

输出:dict of dataframe

OrderedDict([(0,       ID  NUM-1  NUM-2  NUM-3
0 36901 142 168 661
1 36902 78 521 602
2 36903 144 600 521
3 36904 95 457 468
4 36905 69 596 695),
(1, ID NUM-1 NUM-2 NUM-3
0 36906 190 527 691
1 36907 101 403 470)])

(3)header参数:指定列名行,默认0,即取第一行,数据为列名行以下的数据 若数据不含列名,则设定 header = None ,注意这里还有列名的一行。


data = pd.read_excel(basestation,header=None)
print data
输出:
0 1 2 3
0 ID NUM-1 NUM-2 NUM-3
1 36901 142 168 661
2 36902 78 521 602
3 36903 144 600 521
4 36904 95 457 468
5 36905 69 596 695 data = pd.read_excel(basestation,header=[3])
print data
输出:
36903 144 600 521
0 36904 95 457 468
1 36905 69 596 695

(4)skiprows 参数:省略指定行数的数据

data = pd.read_excel(basestation,skiprows = [1])
print data
输出:
ID NUM-1 NUM-2 NUM-3
0 36902 78 521 602
1 36903 144 600 521
2 36904 95 457 468
3 36905 69 596 695

(5)skip_footer参数:省略从尾部数的int行的数据

data = pd.read_excel(basestation, skip_footer=3)
print data
输出:
ID NUM-1 NUM-2 NUM-3
0 36901 142 168 661
1 36902 78 521 602

(6)index_col参数:指定列为索引列,也可以使用u”strings”

data = pd.read_excel(basestation, index_col="NUM-3")
print data
输出:
ID NUM-1 NUM-2
NUM-3
661 36901 142 168
602 36902 78 521
521 36903 144 600
468 36904 95 457
695 36905 69 596

(7)names参数: 指定列的名字。

data = pd.read_excel(basestation,names=["a","b","c","e"])
print data
a b c e
0 36901 142 168 661
1 36902 78 521 602
2 36903 144 600 521
3 36904 95 457 468
4 36905 69 596 695

具体参数如下

>>> print help(pandas.read_excel)
Help on function read_excel in module pandas.io.excel: read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, names=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False, **kwds)
Read an Excel table into a pandas DataFrame Parameters
----------
io : string, path object (pathlib.Path or py._path.local.LocalPath),
file-like object, pandas ExcelFile, or xlrd workbook.
The string could be a URL. Valid URL schemes include http, ftp, s3,
and file. For file URLs, a host is expected. For instance, a local
file could be file://localhost/path/to/workbook.xlsx
sheetname : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed
sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned.
list|None -> Dict of DataFrames is returned, with keys representing
sheets. Available Cases * Defaults to 0 -> 1st sheet as a DataFrame
* 1 -> 2nd sheet as a DataFrame
* "Sheet1" -> 1st sheet as a DataFrame
* [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
* None -> All sheets as a dictionary of DataFrames header : int, list of ints, default 0
Row (0-indexed) to use for the column labels of the parsed
DataFrame. If a list of integers is passed those row positions will
be combined into a ``MultiIndex``
skiprows : list-like
Rows to skip at the beginning (0-indexed)
skip_footer : int, default 0
Rows at the end to skip (0-indexed)
index_col : int, list of ints, default None
Column (0-indexed) to use as the row labels of the DataFrame.
Pass None if there is no such column. If a list is passed,
those columns will be combined into a ``MultiIndex``. If a
subset of data is selected with ``parse_cols``, index_col
is based on the subset.
names : array-like, default None
List of column names to use. If file contains no header row,
then you should explicitly pass header=None
converters : dict, default None
Dict of functions for converting values in certain columns. Keys can
either be integers or column labels, values are functions that take one
input argument, the Excel cell content, and return the transformed
content.
dtype : Type name or dict of column -> type, default None
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
Use `object` to preserve data as stored in Excel and not interpret dtype.
If converters are specified, they will be applied INSTEAD
of dtype conversion. .. versionadded:: 0.20.0 true_values : list, default None
Values to consider as True .. versionadded:: 0.19.0 false_values : list, default None
Values to consider as False .. versionadded:: 0.19.0 parse_cols : int or list, default None
* If None then parse all columns,
* If int then indicates last column to be parsed
* If list of ints then indicates list of column numbers to be parsed
* If string then indicates comma separated list of Excel column letters and
column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
both sides.
squeeze : boolean, default False
If the parsed data only contains one column then return a Series
na_values : scalar, str, list-like, or dict, default None
Additional strings to recognize as NA/NaN. If dict passed, specific
per-column NA values. By default the following values are interpreted
as NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
'1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'nan'.
thousands : str, default None
Thousands separator for parsing string columns to numeric. Note that
this parameter is only necessary for columns stored as TEXT in Excel,
any numeric columns will automatically be parsed, regardless of display
format.
keep_default_na : bool, default True
If na_values are specified and keep_default_na is False the default NaN
values are overridden, otherwise they're appended to.
verbose : boolean, default False
Indicate number of NA values placed in non-numeric columns
engine: string, default None
If io is not a buffer or path, this must be set to identify io.
Acceptable values are None or xlrd
convert_float : boolean, default True
convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric
data will be read in as floats: Excel stores all numbers as floats
internally
has_index_names : boolean, default None
DEPRECATED: for version 0.17+ index names will be automatically
inferred based on index_col. To read Excel output from 0.16.2 and
prior that had saved index names, use True. Returns

to_excel()

存储函数为pd.DataFrame.to_excel(),注意,必须是DataFrame写入excel, 即Write DataFrame to an excel sheet。其具体参数如下:

to_excel(self, excel_writer, sheet_name='Sheet1', na_rep='', float_format=None,columns=None, header=True, index=True, index_label=None,startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None,
inf_rep='inf', verbose=True, freeze_panes=None)

常用参数解析

  • excel_writer : string or ExcelWriter object File path or existing ExcelWriter目标路径

  • sheet_name : string, default ‘Sheet1’ Name of sheet which will contain DataFrame,填充excel的第几页

  • na_rep : string, default ”,Missing data representation 缺失值填充

  • float_format : string, default None Format string for floating point numbers

  • columns : sequence, optional,Columns to write 选择输出的的列。

  • header : boolean or list of string, default True Write out column names. If a list of string is given it is assumed to be aliases for the column names

  • index : boolean, default True,Write row names (index)

  • index_label : string or sequence, default None, Column label for index column(s) if desired. If None is given, andheader and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

  • startrow :upper left cell row to dump data frame

  • startcol :upper left cell column to dump data frame

  • engine : string, default None ,write engine to use - you can also set this via the options,io.excel.xlsx.writer, io.excel.xls.writer, andio.excel.xlsm.writer.

  • merge_cells : boolean, default True Write MultiIndex and Hierarchical Rows as merged cells.

  • encoding: string, default None encoding of the resulting excel file. Only necessary for xlwt,other writers support unicode natively.

  • inf_rep : string, default ‘inf’ Representation for infinity (there is no native representation for infinity in Excel)

  • freeze_panes : tuple of integer (length 2), default None Specifies the one-based bottommost row and rightmost column that is to be frozen

数据源:

    ID  NUM-1   NUM-2   NUM-3
0 36901 142 168 661
1 36902 78 521 602
2 36903 144 600 521
3 36904 95 457 468
4 36905 69 596 695
5 36906 165 453 加载数据:
basestation ="F://python/data/test.xls"
basestation_end ="F://python/data/test_end.xls"
data = pd.read_excel(basestation)

(1)参数excel_writer,输出路径。

data.to_excel(basestation_end)
输出:
ID NUM-1 NUM-2 NUM-3
0 36901 142 168 661
1 36902 78 521 602
2 36903 144 600 521
3 36904 95 457 468
4 36905 69 596 695
5 36906 165 453

(2)sheet_name,将数据存储在excel的那个sheet页面。

data.to_excel(basestation_end,sheet_name="sheet2")

(3)na_rep,缺失值填充

data.to_excel(basestation_end,na_rep="NULL")
输出:
ID NUM-1 NUM-2 NUM-3
0 36901 142 168 661
1 36902 78 521 602
2 36903 144 600 521
3 36904 95 457 468
4 36905 69 596 695
5 36906 165 453 NULL

(4)colums参数: sequence, optional,Columns to write 选择输出的的列。

data.to_excel(basestation_end,columns=["ID"])
输出
ID
0 36901
1 36902
2 36903
3 36904
4 36905
5 36906

(5)header 参数: boolean or list of string,默认为True,可以用list命名列的名字。header = False 则不输出题头

data.to_excel(basestation_end,header=["a","b","c","d"])
输出:
a b c d
0 36901 142 168 661
1 36902 78 521 602
2 36903 144 600 521
3 36904 95 457 468
4 36905 69 596 695
5 36906 165 453 data.to_excel(basestation_end,header=False,columns=["ID"])
header = False 则不输出题头
输出:
0 36901
1 36902
2 36903
3 36904
4 36905
5 36906

(6)index : boolean, default True Write row names (index)

默认为True,显示index,当index=False 则不显示行索引(名字)。

index_label : string or sequence, default None

设置索引列的列名。

data.to_excel(basestation_end,index=False)
输出:
ID NUM-1 NUM-2 NUM-3
36901 142 168 661
36902 78 521 602
36903 144 600 521
36904 95 457 468
36905 69 596 695
36906 165 453 data.to_excel(basestation_end,index_label=["f"])
输出:
f ID NUM-1 NUM-2 NUM-3
0 36901 142 168 661
1 36902 78 521 602
2 36903 144 600 521
3 36904 95 457 468
4 36905 69 596 695
5 36906 165 453

来源于https://blog.csdn.net/tongxinzhazha/article/details/78796952

Pandas之read_excel()和to_excel()函数解析的更多相关文章

  1. python重要的第三方库pandas模块常用函数解析之DataFrame

    pandas模块常用函数解析之DataFrame 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器 ...

  2. pandas模块常用函数解析之Series(详解)

    pandas模块常用函数解析之Series 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器输入网 ...

  3. [转]javascript eval函数解析json数据时为什加上圆括号eval("("+data+")")

    javascript eval函数解析json数据时为什么 加上圆括号?为什么要 eval这里要添加 “("("+data+")");//”呢?   原因在于: ...

  4. PHP json_decode 函数解析 json 结果为 NULL 的解决方法

    在做网站 CMS 模块时,对于模块内容 content 字段,保存的是 json 格式的字符串,所以在后台进行模块内容的编辑操作 ( 取出保存的数据 ) 时,需要用到 json_decode() 函数 ...

  5. Matlab中bsxfun和unique函数解析

    一.问题来源 来自于一份LSH代码,记录下来. 二.函数解析 2.1 bsxfun bsxfun是一个matlab自版本R2007a来就提供的一个函数,作用是”applies an element-b ...

  6. socket使用TCP协议时,send、recv函数解析以及TCP连接关闭的问题

    Tcp协议本身是可靠的,并不等于应用程序用tcp发送数据就一定是可靠的.不管是否阻塞,send发送的大小,并不代表对端recv到多少的数据. 在阻塞模式下, send函数的过程是将应用程序请求发送的数 ...

  7. sigaction函数解析

    http://blog.chinaunix.net/uid-1877180-id-3011232.html sigaction函数解析  sigaction函数的功能是检查或修改与指定信号相关联的处理 ...

  8. driver_register()函数解析

    driver_register()函数解析 /** * driver_register - register driver with bus * @drv: driver to register *  ...

  9. async函数解析

    转载请注明出处:async函数解析 async函数是基于Generator函数实现的,也就是说是Generator函数的语法糖.在之前的文章有介绍过Generator函数语法和异步应用,如果对其不了解 ...

随机推荐

  1. upc组队赛3 T-net【贪心】

    T-net 题目描述 T-net which is a new telecommunications company, plans to install its base stations in th ...

  2. 移动端mintUI mt-datetime-picker 组件使用详解

    <mt-datetime-picker v-model="pickerVisible" //绑定的数据值 ref="pickerData" // 点击触发 ...

  3. vue-cli3使用cdn引入

    1. index.html引入: <script src="https://cdn.bootcss.com/moment.js/2.20.1/moment.min.js"&g ...

  4. junit单元测试报错Failed to load ApplicationContext,但是项目发布到tomcat浏览器访问没问题

    junit单元测试报错Failed to load ApplicationContext,但是项目发布到tomcat浏览器访问没问题,说明代码是没问题的,配置也没问题.开始时怀疑是我使用junit版本 ...

  5. ubuntu 下 使用 Git 维护 linux kernel版本

    学习linux内核一段时间,意识到内核的版本需要严格控制.利用Git工具可以很轻松的完成不同开发人员不同模块之间的代码融合与版本控制 . 1. 首先,安装Git .可以参考廖雪峰的博客  https: ...

  6. Linux账号管理与ALC权限设定(二) 批量增加用户脚本

    接上篇.鸟哥提出了一个问题.就是 如果myuser1用户是这个项目的助理,他只能查看该目录下的内容,而无法修改删除.那该如何操作呢? 首先,不能将该用户加入projecta这个群组,否则他也可以修改删 ...

  7. logging自定义模板

    import logging logger=logging.getLogger('这是一个日志')#先生成一个日志 formatter=logging.Formatter('%(asctime)s % ...

  8. caffer的三种文件类别

    solver文件 是一堆超参数,比如迭代次数,是否用GPU,多少次迭代暂存一次训练所得参数,动量项,权重衰减(即正则化参数),基本的learning rate,多少次迭代打印一次loss,以及网络结构 ...

  9. 新建门脸Facade类

    1.App\Contract目录下新建 CommonContract 类 <?php namespace App\Contract; use Carbon\Carbon; use \Dimsav ...

  10. 【专业的 Markdown 编辑写作软件】MWeb for Mac基本使用教程

    MWeb for Mac是一款专业的 Markdown 编辑写作软件,可以生成MarkDown编辑器和静态博客,在记日记的时候,你可以使用插入图片的功能,使用MWeb软件你可以拖拽或直接粘贴即可插入图 ...