题目

记得曾经和稳稳比谁后抄这个题的题解,看来是我输了

不难发现\(p\)是给着玩的,只需要求一个总情况数除以\(\binom{n+m}{n}\)就好了

记\(i\)为无效的失败次数,即\(\rm Alice\)在得分为\(0\)时的失败次数,那么最后的得分就是\(n-m+i\)

不妨将赢看成\(1\)输看成\(-1\),我们把输赢情况写成一个\(n+m\)的序列,记这个序列的最小前缀和为\(t\),那么无效失败次数就是\(|\min(0,t)|\),也就是当\(t<0\)的时候,得分应为\(n-m+|t|\)

证明的话,考虑一种构造方法,我们把对最小前缀和产生影响的\(t\)个\(-1\)拿出来,显然两个\(-1\)之间的数的和应为\(0\),和为\(0\)意思就是分数可能涨了涨但最后又扣成\(0\)了,于是在得分为\(0\)的时候失败的次数就是\(t\)次

之后套路的转化成一个平面上的问题,将\(-1\)视为向上走,\(1\)视为向右走,那么无效失败次数为\(i\)的方案数等价与在坐标系上从\((0,0)\)走到\((n,m)\)且经过至少一次\(y=x+i\)且不超过的方案数

简单容斥一下,求一下严格低于\(y=x+i+1\)的方案数减一下严格低于\(y=x+i\)的方案数就好了

这个老哥的博客里的图挺好的

对于一个不合法的方案,我们取第一次达到\(y=x+i\)之前的路径,并将这段路径沿\(y=x+i\)翻折,就得到了一条从\((-i,i)\)到\((n,m)\)的路径,不难发现这样的路径会经过至少一次\(y=x+i\),所以这样的路径和不合法的路径是一一对应的,显然这样的路径条数是\(\binom{n+m}{n+i}\)

于是严格低于\(y=x+i\)的路径条数就是\(\binom{n+m}{n}-\binom{n+m}{n+i}\),于是恰好经过经过至少一次\(y=x+i\)且不超过的方案数为\(\binom{n+m}{m}-\binom{n+m}{n+i+1}-\binom{n+m}{n}+\binom{n+m}{n+i}=\binom{n+m}{n+i}-\binom{n+m}{n+i+1}\)

对于\(n\geq m\)的情况,我们求得即为\(\sum_{i=0}^m(n-m+i)(\binom{n+m}{n+i}-\binom{n+m}{n+i+1})\)

简单划开就会发现求得其实是\((n-m)\binom{n+m}{m}+\sum_{i=0}^{m-1}\binom{n+m}{n+i}\)

多组询问求后面那个柿子好像还是一道题来着,直接大力莫队即可

[Code+#3]博弈论与概率统计的更多相关文章

  1. loj6300 「CodePlus 2018 3 月赛」博弈论与概率统计

    link 题意: A和B玩游戏,每轮A赢的概率为p.现在有T组询问,已知A赢了n轮输了m轮,没有平局,赢一局A得分+1,输一局得分-1,问A得分期望值? $n+m,T\leq 2.5\times 10 ...

  2. bzoj 5283: [CodePlus 2018 3 月赛]博弈论与概率统计

    Description 大家的好朋友小 L 来到了博弈的世界.Alice 和 Bob 在玩一个双人游戏.每一轮中,Alice 有 p 的概率胜利,1 -p 的概率失败,不会出现平局.双方初始时各有 0 ...

  3. [CodePlus 2018 3 月赛] 博弈论与概率统计

    link 题意简述 小 $A$ 与小 $B$ 在玩游戏,已知小 $A$ 赢 $n$ 局,小 $B$ 赢 $m$ 局,没有平局情况,且赢加一分,输减一分,而若只有 $0$ 分仍输不扣分. 已知小 $A$ ...

  4. LOJ6300 BZOJ5283 [CodePlus 2018 3 月赛]博弈论与概率统计

    一道好题!很久以前就想做了,咕到了现在,讲第二遍了才做. 首先我们观察到$p$是没有用的 因为赢的次数一定 那么每一种合法序列出现的概率均为$p^n*(1-p)^m$ 是均等的 我们可以不看它了 然后 ...

  5. LOJ6300 博弈论与概率统计 组合、莫队

    传送门 如果在\(0\)以下之后仍然会减分,那么最后的结果一定是\(N-M\). 注意到如果在Alice分数为\(0\)时继续输,那么就相当于减少了一次输的次数.也就是说如果说在总的博弈过程中,Ali ...

  6. 程序员的数学 三册数学,概率统计、线性代数pdf

    程序员的数学1 2012.pdf 2012版 程序员的数学2 概率统计 ,平冈和幸,(日)堀玄著 ,P4006 2015.pdf 2015版 程序员的数学3-线性代数 2016.pdf 2016版 如 ...

  7. 【NLP】暑假课作业3 - 词性标注(简单词频概率统计)

    作业任务: 使用98年人民日报语料库进行词性标注训练及测试. 作业输入: 98年人民日报语料库(1998-01-105-带音.txt),用80%的数据作为训练集,20%的数据作为验证集. 运行环境: ...

  8. 概率统计(DP)

    问题叙述性说明 生成n个月∈[a,b]随机整数.并且将它们输出到x概率. 输入格式 输入线跟四个整数n.a,b,x,用空格分隔. 输出格式 输出一行包括一个小数位和为x的概率.小数点后保留四位小数 例 ...

  9. python 特定份数的数据概率统计(原创)

    使用numpy模块中的histogram函数模块 Histogram(a,bins=10,range=None,normed=False,weights=None)其中, a是保存待统计数据的数组, ...

随机推荐

  1. Eureka 系列(03)Spring Cloud 自动装配原理

    Eureka 系列(03)Spring Cloud 自动装配原理 [TOC] 0. Spring Cloud 系列目录 - Eureka 篇 本文主要是分析 Spring Cloud 是如何整合 Eu ...

  2. vue项目工具文件utils.js javascript常用工具类,javascript常用工具类,util.js

    vue项目工具文件utils.js :https://blog.csdn.net/Ajaxguan/article/details/79924249 javascript常用工具类,util.js : ...

  3. springboot核心原理

    1.基于你对springboot的理解描述一下什么是springboot 它是一个服务于spring框架的框架,能够简化配置文件,快速构建web应用, 内置tomcat,无需打包部署,直接运行. 2. ...

  4. postgresql 备份数据库结构

    --只备份结构pg_dump -U postgres -d grgzpt -f D:\dump.sql -s --备份结构和数据pg_dump -U postgres -d grgzpt -f D:\ ...

  5. show line numbers

  6. WPF 从服务器下载文件

    1.先获取服务器下载地址,给出要下载到的目标地址 public void DownloadFileFromServer() { string serverFilePath = "http:/ ...

  7. 【代码健壮性】善用data-属性来关联,慎用parent()之类的查找结构

    $(".minus,target").unbind().click(function(){ console.log(this); var $thisParent = $(this) ...

  8. vue 表单输入绑定 checkbox

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. Dart编程实例 - Dart 面向对象编程

    Dart编程实例 - Dart 面向对象编程 class TestClass { void disp() { print("Hello World"); } } void main ...

  10. bzoj 2084

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2084 这道题很容易想到就是一个变种的最长回文字串, 不过回文的规则变成了s[i + p[i] ...