2019西北工业大学程序设计创新实践基地春季选拔赛 D(卢卡斯定理)
链接:https://ac.nowcoder.com/acm/contest/553/D
来源:牛客网
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld
题目描述
Chino的数学很差,因此Cocoa非常担心。今天,Cocoa要教Chino解不定方程。
众所周知,不定方程的解有0个或者若干个。
给出方程:
Cocoa想知道这个不定方程的正整数解和非负整数解各有几个。
题目对Chino来说太难啦,你能帮一帮Chino吗?
输入描述:
两个正整数m, n
输出描述:
题目要求的答案,即正整数解的个数和非负整数解的个数 。由于答案可能会很大,你只需要输出答案 mod(10 9+ 7) 即可。
输出
20 120 解题思路:
组合数:
1.n,m比较小时:C(n,m)=C(n-1,m)+C(n-1,m-1);
2.卢卡斯定理:n,m比较大时:C(n,m)%mod=C(n%mod,m%mod)*C(n/mod,m/mod)%mod; 第一种情况:将n拆分成m个正整数的和,可以认为将n个小球放入m个盒子,每个盒子都不可为空,可以直接用隔板法,n个小球有n-1的空隙,我们只要在n-1个空隙中选择m-1个空隙放入隔板即可,答案为C(n-1,m-1)
第二种情况:将n拆分成m个非负整数的和,可以认为将n个小球放入m个盒子,但是有的盒子可以为空,不能直接使用隔板法,可以假设我们从外面拿了m个小球,以保证每个盒子至少有一个小球,然后继续又使用隔板法,n+m个小球有n+m-1个间隙,选择其中的m-1个空隙放入隔板就可以了,放完隔板后,每部分取走一个小球即为每个盒子球的个数,方案总数为C(n+m-1,m-1)
直接套用卢卡斯定理模板就可以了 代码:
#include <iostream>
#include <cstdio>
using namespace std;
#define ll long long
#define mod 1000000007
ll n,m,l,r;
ll qmul(ll a,ll b){
ll res=;
while(b){
if(b&) res=(res+a)%mod;
b>>=;
a=(a+a)%mod;
}
return res;
}
ll qpow(ll a,ll b){
ll res=;
while(b){
if(b&) res=qmul(res,a);
b>>=;
a=qmul(a,a);
}
return res;
}
void exgcd(ll a,ll b,ll &x,ll &y,ll &c){
if(!b){
x=,y=,c=a;
}else{
exgcd(b,a%b,y,x,c);
y-=a/b*x;
}
}
ll INV(ll a,ll p){
ll x,y,c;
exgcd(a,p,x,y,c);
return (x%p+p)%p;
}
ll C(int a,int b){
if(a<b) return ;
if(b==) return ;
if(b>a-b) b=a-b;
ll ca=,cb=;
for(int i=;i<b;i++){
ca=ca*(a-i)%mod;
cb=cb*(b-i)%mod;
}
return ca*qpow(cb,mod-)%mod; //用费马小定理求逆元
//return ca*INV(cb,mod)%mod; //用扩展欧几里得求逆元
}
ll lucas(int a,int b){
ll res=;
while(a&&b){
res=res*C(a%mod,b%mod)%mod;
a/=mod;
b/=mod;
}
return res;
}
int main(){
scanf("%lld%lld",&m,&n);
printf("%lld %lld\n",lucas(n-,m-),lucas(n+m-,m-));
return ;
}
2019西北工业大学程序设计创新实践基地春季选拔赛 D(卢卡斯定理)的更多相关文章
- 2019西北工业大学程序设计创新实践基地春季选拔赛 I Chino with Rewrite (并查集+树链剖分+线段树)
链接:https://ac.nowcoder.com/acm/contest/553/I 思路:离线整棵树,用并查集维护下联通的情况,因为值只有60个,用2的x(1<=x<=60)次方表示 ...
- 2019西北工业大学程序设计创新实践基地春季选拔赛(重现赛) Chino with Equation(组合公式)
链接:https://ac.nowcoder.com/acm/contest/553/D来源:牛客网 题目描述 Chino的数学很差,因此Cocoa非常担心.今天,Cocoa要教Chino解不定方程. ...
- 《程序设计语言——实践之路》【PDF】下载
程序设计语言--实践之路>[PDF]下载链接: https://u253469.pipipan.com/fs/253469-230382240 内容简介 本书在美国大学已有使用了十余年,目前被欧 ...
- 《程序设计语言——实践之路(英文第三版)》【PDF】下载
<程序设计语言--实践之路(英文第三版)>[PDF]下载链接: https://u253469.pipipan.com/fs/253469-230382234 内容简介 <程序设计语 ...
- 《程序设计语言——实践之路【PDF】下载
<程序设计语言--实践之路[PDF]下载链接: https://u253469.pipipan.com/fs/253469-230382240 内容简介 <程序设计语言--实践之路(第3版 ...
- 腾讯云“智能+互联网TechDay”:揭秘智慧出行核心技术与创新实践
现如今,地面交通出行与大家的生活息息相关.在当前城市道路日益复杂和拥挤的情况下,如何保证交通出行的安全和便捷相信是每个人以及众多专家.科研工作者重点关注的问题. “智慧交通”系统是解决交通发展瓶颈的有 ...
- 阿里聚安全受邀参加SFDC安全大会,分享互联网业务面临问题和安全创新实践
现今,技术引领的商业变革已无缝渗透入我们的日常生活,「技术改变生活」的开发者们被推向了创新浪潮的顶端.国内知名的开发者技术社区 SegmentFault 至今已有四年多了,自技术问答开始,他们已经发展 ...
- 2019年学Java开发有优势吗?
随着信息科技的发展,在我们的日程生活和工作中到处充斥和使用着互联网信息技术.事实说明,互联网已经越来越广泛地深入到人们生活的方方面面,Java技术服务市场需求空缺会越来越大.学会一门IT技术,将拥有更 ...
- [BFS,A*,k短路径] 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 path (Problem - 6705)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=6705 path Time Limit: 2000/2000 MS (Java/Others) Mem ...
随机推荐
- hdu 6152 : Friend-Graph (2017 CCPC网络赛 1003)
题目链接 裸的结论题.百度 Ramsey定理.刚学过之后以为在哪也不会用到23333333333,没想到今天网络赛居然出了.顺利在题面更改前A掉~~~(我觉得要不是我开机慢+编译慢+中间暂时死机,我还 ...
- Python3解leetcode Number of Boomerangs
问题描述: Given n points in the plane that are all pairwise distinct, a "boomerang" is a tuple ...
- 怎么测试php代码
没有任何一名程序员可以一气呵成.完美无缺的在不用调试的情况下完成一个功能或模块.调试实际分很多种情况. 暴力调试 这种方式简单粗暴,一般PHP程序员都会用,那就是浏览器调试,在编辑器内写完代码后随后打 ...
- 【Swagger2】SpringBoot整合swagger2
Swagger 简介 Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视化 RESTful 风格的 Web 服务.总体目标是使客户端和文件系统作为服务器以同样的速度来更新.文件的方法, ...
- 基于canvas实现的高性能、跨平台的股票图表库--clchart
什么是 ClChart? ClChart是一个基于canvas创建的简单.高性能和跨平台的股票数据可视化开源项目.支持PC.webApp以及React Native和Weex等平台.在React Na ...
- git错误处理
1.今天 当我 执行 git add somefile 的时候,出现 如下 错误: If no other git process is currently running, this prob ...
- php面试专题---9、会话控制考点
php面试专题---9.会话控制考点 一.总结 一句话总结: 面向对象.设计模式这些特别好用,需要融会贯通 1.请写出PHP类权限控制修饰符? public.protected.private 2.p ...
- linux 统计代码行数
列出目录下所有文件(仅有文件名):ls -laR 列出目录下所有文件名称find . * 统计当前目录下全部代码行数find . * | xargs wc -l 统计当前目录下java文件行数,去除空 ...
- Django 前戏
1.web应用 web应用程序是一种可以通过web访问的应用程序.程序最大的好处就是用户很容易的访问应用程序,用户只需要有浏览器即可,不需要在安装其他的软件,应用程序有两种模式C/S,B/S C/S模 ...
- crazyflie四轴飞行器
源地址:http://www.bitcraze.se/2013/02/pre-order-has-started/ Crazyflie是一个开源的纳米四旋翼 来几张靓照 开发平台是开源的,所以原理图和 ...