1004 四子连棋

时间限制: 1 s
空间限制: 128000 KB
题目等级 : 黄金 Gold
 
 
 
题目描述 Description

在一个4*4的棋盘上摆放了14颗棋子,其中有7颗白色棋子,7颗黑色棋子,有两个空白地带,任何一颗黑白棋子都可以向上下左右四个方向移动到相邻的空格,这叫行棋一步,黑白双方交替走棋,任意一方可以先走,如果某个时刻使得任意一种颜色的棋子形成四个一线(包括斜线),这样的状态为目标棋局。

 
 
输入描述 Input Description
从文件中读入一个4*4的初始棋局,黑棋子用B表示,白棋子用W表示,空格地带用O表示。
输出描述 Output Description

用最少的步数移动到目标棋局的步数。

样例输入 Sample Input

BWBO
WBWB
BWBW
WBWO

样例输出
Sample Output

5

数据范围及提示
Data Size & Hint

hi

还有迭代加深搜的方法,有待探索。

#include<bits/stdc++.h>
#define rep(i , n) for(int i = 0 ; i < (n) ; i++)
using namespace std;
char m[][];
int dir[][] = {{ , },{- , },{ , },{, -}};
struct node{
char M[][];
int dis ;
char last;
node(char m[][] , int d = , char c = 'B')
{
rep(i , )
{
rep(j , )
{
M[i][j] = m[i][j];
}
}
dis = d ;//移动步数
last = c ;//标录上一次与哪个棋子进行了交换
}
}; string con(char m[][])//比较移动后的棋盘与之前的棋盘是否相同与map<string , int>相结合结合
{
string s = "";
rep(i , )
rep(j , )
s += m[i][j];
return s;
} bool judge(char m[][])//判断是否有四子连棋
{
rep(i , )
{
if(m[i][] == m[i][] && m[i][] == m[i][] && m[i][] == m[i][])
return true ;
if(m[][i] == m[][i] && m[][i] == m[][i] && m[][i] == m[][i])
return true ;
}
if(m[][] == m[][] && m[][] == m[][] && m[][] == m[][])
return true ;
if(m[][] == m[][] && m[][] == m[][] && m[][] == m[][])
return true ;
return false ;
}
map<string , int>vis; int main()
{
rep(i , )
rep(j , )
cin >> m[i][j];
queue<node>q;
q.push(node(m , , 'O'));
vis[con(m)] = ;
while(!q.empty())
{
node t = q.front() ;
q.pop() ;
if(judge(t.M))
{
cout << t.dis <<endl ;
return ;
}
int x[] , y[];
int num = - ;
rep(i , )
{
rep(j , )
{
if(t.M[i][j] == 'O')
{
x[++num] = i;
y[num] = j ;
}
}
}
rep(i , )
{
rep(j , )
{
int xx = x[i] + dir[j][];
int yy = y[i] + dir[j][];
char temp[][];
rep(i , )
rep(j , )
temp[i][j] = t.M[i][j];
if(xx >= && xx < && yy >= && yy < &&t.M[xx][yy]!='O' && t.M[xx][yy] != t.last) //空与空不移,不和上一次移过的一样
{
temp[x[i]][y[i]] = temp[xx][yy];
temp[xx][yy] = 'O';
}
string s = con(temp);
if(!vis[s])//移完过后是否与之前的棋盘相同
{
vis[s] = ;
q.push(node(temp , t.dis+ , temp[x[i]][y[i]]));
if(judge(temp))
{
cout << t.dis+ << endl;
return ;
}
}
}
}
} return ;
}

bfs(标记整个棋盘)的更多相关文章

  1. hihocoder#1050 : 树中的最长路(树中最长路算法 两次BFS找根节点求最长+BFS标记路径长度+bfs不容易超时,用dfs做TLE了)

    #1050 : 树中的最长路 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中, ...

  2. 【简易DFS/BFS+标记搜索次序的数组】zznu-2025 : 简单环路

    2025 : 简单环路 时间限制:1 Sec 内存限制:128 MiB提交:145 答案正确:41 提交 状态 编辑 讨论区 题目描述 有一个N x M 大小的地图,地图中的每个单元包含一个大写字母. ...

  3. POJ 1753 Flip Game(状态压缩+BFS)

    题目网址:http://poj.org/problem?id=1753 题目: Flip Game Description Flip game is played on a rectangular 4 ...

  4. 【LeetCode】BFS(共43题)

    [101]Symmetric Tree 判断一棵树是不是对称. 题解:直接递归判断了,感觉和bfs没有什么强联系,当然如果你一定要用queue改写的话,勉强也能算bfs. // 这个题目的重点是 比较 ...

  5. [蓝桥杯2016初赛]卡片换位 BFS

    题目描述 你玩过华容道的游戏吗?这是个类似的,但更简单的游戏.看下面 3 x 2 的格子 +---+---+---+ | A | * | * | +---+---+---+ | B | | * | + ...

  6. HNU 13411 Reverse a Road II(最大流+BFS)经典

    Reverse a Road II Time Limit: 10000ms, Special Time Limit:25000ms, Memory Limit:65536KB Total submit ...

  7. js算法:分治法-棋盘覆盖

    在一个 2^k * 2^k 个方格组成的棋盘中,若恰有一个方格与其他方格不同.则称该方格为一特殊方格,称该棋盘为一特殊棋盘.显然特殊方格在棋盘上出现的位置有 4^k 种情形.因而对不论什么 k> ...

  8. AC日记——[网络流24题]方格取数问题 cogs 734

    734. [网络流24题] 方格取数问题 ★★☆   输入文件:grid.in   输出文件:grid.out   简单对比时间限制:1 s   内存限制:128 MB «问题描述: 在一个有m*n ...

  9. q1096

    一,看题 1,大概是每个点都来一次BFS标记下应该就可以. 2,你可以想想队列为啥pop()是l++; 3,还是字符你得注意下. 4,x,y,m,n,行列你得搞清楚. 5,这棋盘的破东西.. 6,额, ...

随机推荐

  1. 如何在Linux下手动编译安装gcc

    如果可以通过apt来安装的话,尽量不要手工编译了,手工编译是最后的选择.用apt安装,只需要输入一条命令: sudo apt-get install gcc 手工编译的话,gcc和其他软件包存在如下的 ...

  2. nginx http正向代理简单配置及systemd 配置

    #user nobody; worker_processes 1; #error_log logs/error.log; #error_log logs/error.log notice; #erro ...

  3. 前端每日实战:37# 视频演示如何把握好 transition 和 animation 的时序,创作描边按钮特效

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/mKdzZM 可交互视频教程 此视频 ...

  4. Spring---异步消息

    1.异步消息 1.1.目的:   为了  系统与系统  之间的通信: 1.2.概念: 异步消息  :消息的   发送者  无需 等待消息  接收者的处理及返回,甚至 无需 关心消息是否发送成功: 1. ...

  5. handy源码阅读(二):EventsImp类

    EventsImp用于完成事件的处理. class EventsImp { EventBase* base_; PollerBase* poller_; std::atomic<bool> ...

  6. 各种IO之间的区别

  7. U盘安装win8(win7)+centos7双系统

    centos7除了之后,就像尝鲜看看,但是发现安装之后会失去win8启动项.导致重装系统,经过反复折腾,终于搞定了,发出来共享下.默认你的 window系统已经安装好,不介绍window安装过程.本文 ...

  8. Json转换 在java中的应用

    Json转换辅助类比较多,比如谷歌的Gson,阿里的FastJson,Jackson.net.sf.json等等 用了一圈后,本人还是比较推荐用net.sf.json 这里就介绍一下net.sf.js ...

  9. spring mvc中的@Entity是什么意思?

    @Entitypublic Class JavaBean{}标注该类为实体类.

  10. OC端代码

    ViewController.m #import "ViewController.h"#import <Flutter/Flutter.h>#include " ...