最近邻分类

概念讲解

我们使用的是scikit-learn 库中的neighbors.KNeighborsClassifier 来实行KNN.

from sklearn import neighbors
neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30,p=2, metric=’minkowski’, metric_params=None, n_jobs=1)

n_neighbors 是用来确定多数投票规则里的K值,也就是在点的周围选取K个值最为总体范围

weights : 这个参数很有意思,它的作用是在进行分类判断的时候给最近邻的点加上权重,它的默认值是'uniform',也就是等权重,所以在这种情况下我们就可以使用多数投票规则来判断输入实例的类别预测。还有一个选择是'distance',是按照距离的倒数给定权重。在这种情况下,距离输入实例最近点的类别情况比其他点类别情况更具有说服力。举个例子假如距离询问点最近的三个数据点中,有 1 个 A 类和 2 个 B 类,并且假设 A 类离询问点非常近,而两个 B 类距离则稍远。在等权加权中,K(3)NN 会判断问题点为 B 类;而如果使用距离加权,那么 A 类有更高的权重(因为更近),如果它的权重高于两个 B 类的权重的总和(类别于多数投票规则使用个数,这里只需要大于B类权重的和就可以了),那么算法会判断问题点为 A 类。权重功能的选项应该视应用的场景而定。还有最后一种情况就是用户自己设定权重的设置方法。

algorithm 是分类时采取的算法,有 {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’},一般情况下选择auto就可以,它会自动进行选择最合适的算法。

p: 在机器学习系列中,我们知道p=1时,距离方法定义为曼哈顿距离,在p=2的时候我们定为欧几里得距离。默认值为2。

接下来,我们就要进行fit() 拟合功能,生成一个knn模型。

knn=KNeighborsClassifier()
knn.fit(X,y)

其中X是数组形式(下面的例子中会有注释讲解),在X中的每一组数据可以是 tuple 也可以是 list 或者一维 array,但要注意所有数据的长度必须一样(等同于特征的数量)。这一点非常的重要。我们可以把X看成是一个矩阵形式,每一行代表的是一个输入实例的特征数据。

y 是一个和 X 长度相同的 list 或一个一维 array,其中每个元素是 X 中相对应的数据的分类标签。

接下来就是进行预测:

knn.predict(X)

这里输入X一个数组,形式类似于(如果是一个二维特征的话):[ [0,1 ] ,[2,1]...]

概略预测

knn.predict_proba(X)

输出来的是一个数组形式,每一个元素代表了输入实例属于这一类的概率。而数组对应的类别的顺序是根据y中的大小比较顺序参考这里。当然你的输入实例要是不仅仅是一个而是多个的话,那么输出也就相应的变成了[[p1,p2],[p3,p4]...]

正确率打分

neighbors.KNeighborsClassifier.score(X, y, sample_weight=None)

我们一般会把我们的训练数据集分成两类,一个用作学习并训练模型,一列用作测试,这个动能就是学习之后进行测试的功能来看一下准确度。

实际例子

首先我们先拿我们在机器学习系列中的KNN算法中的电影分裂举例。我们在那个系列中自己实现了一个KNN分类器,采取的是欧几里得的距离,这里我们直接使用sklearn库中的函数来实现KNN算法,大家可以参考两者来看。

import numpy as np
import sklearn
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
X_train = np.array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) #这里是数组形式哦,要注意哦,如果输入的dataframe(因为一般我们导入文件的话都是使用csv模式,导入进来一般是形成dataframe模式,我们需要在fit()函数中使用 X_train.values,y_train.values) y_train=['A','A','B','B']
knn=KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train,y_train)
knn.predict([[5,0],[4,0]])#要注意哦,预测的时候也要上使用数组形式的

【Sklearn系列】KNN算法的更多相关文章

  1. 深入浅出KNN算法(二) sklearn KNN实践

    姊妹篇: 深入浅出KNN算法(一) 原理介绍 上次介绍了KNN的基本原理,以及KNN的几个窍门,这次就来用sklearn实践一下KNN算法. 一.Skelarn KNN参数概述 要使用sklearnK ...

  2. day-9 sklearn库和python自带库实现最近邻KNN算法

    K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...

  3. 【机器学习算法基础+实战系列】KNN算法

    k 近邻法(K-nearest neighbor)是一种基本的分类方法 基本思路: 给定一个训练数据集,对于新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例多数属于某个类别,就把输 ...

  4. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  5. 机器学习回顾篇(6):KNN算法

    1 引言 本文将从算法原理出发,展开介绍KNN算法,并结合机器学习中常用的Iris数据集通过代码实例演示KNN算法用法和实现. 2 算法原理 KNN(kNN,k-NearestNeighbor)算法, ...

  6. KNN算法

    1.算法讲解 KNN算法是一个最基本.最简单的有监督算法,基本思路就是给定一个样本,先通过距离计算,得到这个样本最近的topK个样本,然后根据这topK个样本的标签,投票决定给定样本的标签: 训练过程 ...

  7. 机器学习笔记--KNN算法2-实战部分

    本文申明:本系列的所有实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. 一案例导入:玛利亚小姐最近寂寞了, ...

  8. KNN算法简单应用

    这里是写给小白看的,大牛路过勿喷. 1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集 ...

  9. 深入浅出KNN算法(一) KNN算法原理

    一.KNN算法概述 KNN可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一,注意KNN算法是有监督学习中的分类算法,它看起来和另一个机器学习算法Kmeans有点像(Kmeans是无监督学 ...

随机推荐

  1. 乘风破浪:LeetCode真题_012_Integer to Roman

    乘风破浪:LeetCode真题_012_Integer to Roman 一.前言 经过了前面的思维训练,我们在某些方面有了一定的提高,但是对于实际的问题,要在短时间内得到答案,还是需要我们多多的练习 ...

  2. python基础语法1

    一.基础语法 1.常量 python语言没有真正的常量,它只是字面常量. 2.变量 变量是一个指针,它指向一块内存. 变量的命名规则: 1)只能包含字母.数字和下划线: 2)只能以字母或者下划线开始: ...

  3. redis下的持久化保存

    rdb.h   rdb.c  --->  完成数据保存到临时文件,再利用rename保存到指定文件的过程: 如果需要写一个数据持久化保存的功能时,可以参考这部分代码: //rdb API int ...

  4. [EffectiveC++]item21:Don't try to return a reference when you must return an object

  5. Mac快捷锁屏设置

    Mac快捷锁屏设置: 1. 安全性与隐私 - 通用:进入睡眠或开始屏幕保护程序 --> “ 立即 ”. 2. 桌面与屏幕保护程序 - 触发角:启动屏幕保护程序 注:第二步中触发角可以设置四个角中 ...

  6. BZOJ 1015 星球大战starwar 逆向并查集

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1015 题目大意: 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个 ...

  7. 自定义控件(视图)2期笔记13:View的滑动冲突之 内部拦截法

    1. 内部拦截法: 父容器不拦截事件,所有的事件全部都传递给子元素,如果子元素需要此事件就直接消耗掉,否则就交给父容器进行处理. 这种方法和Android中的事件分发机制不一样,需要配合request ...

  8. Guava包学习--Table

    Table,顾名思义,就好像HTML中的Table元素一样,其实就是行+列去确定的值,更准确的比喻其实就是一个二维矩阵. 其实它就是通过行+列两个key去找到一个value,然后它又containsv ...

  9. 【NOIP2014】解方程

    题目描述 已知多项式方程 \[a_0 + a_1x + a_2x^2 + \dots +a_nx^n=0\] 求这个方程在\([1,m]\)内的整数解(\(n\)和\(m\)均为正整数). 输入输出格 ...

  10. 「bzoj 4180: 字符串计数」

    题目 真是一道好题 首先根据一个非常显然的贪心,如果给出了一个串\(S\),我们如何算最小操作次数呢 非常简单,我们直接把\(S\)拉到\(T\)的\(SAM\)上去跑,如果跑不动了就停下来,重新回到 ...