hdu1024 Max Sum Plus Plus 滚动dp
Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 41885 Accepted Submission(s): 15095
I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a
brave ACMer, we always challenge ourselves to more difficult problems.
Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But
I`m lazy, I don't want to write a special-judge module, so you don't
have to output m pairs of i and j, just output the maximal summation of
sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Process to the end of file.
TLE的代码
#include<iostream>
#include<math.h>
#define ll long long
using namespace std;
ll dp[][],a[];//dp[i][j]表示将数组a中前j个数分成 i组的最大和
int main()
{
ll n,m;
while(~scanf("%lld%lld",&m,&n))
{
for(int i=;i<=n;i++)
cin>>a[i];
for(int i=;i<=m;i++)
{
for(int j=i;j<=n;j++)
{
ll temp=-;
for(int x=i-;x<=j-;x++)
{
temp=dp[i-][x]>temp?dp[i-][x]:temp;
}
dp[i][j]=dp[i][j-]+a[j]>temp+a[j]?dp[i][j-]+a[j]:temp+a[j];
} }
cout<<dp[m][n]<<endl;
}
return ;
}
滚动DP优化
对动态转移方程:dp[i][j]=max(dp[i][j-1]+a[j],dp[i-1][x]+a[j]),i-1<=x<=j-1,dp[i-1][x]表示把数组a的前x个数分成i-1个子段的和的最大值。通过转移方程我们可以看出,对于求下一个dp[i][j]我们
只用到它的前两个状态dp[i][j-1]和dp[i-1][x],dp[i][j-1]在上一层循环中已经求出来了,因此我们只要再开一个滚动数组mx[j]来取代dp[i-1][x],随着j的改变不断更新mx数组就可以降低一层循环。
这样动态转移方程就变为:dp[i][j]=max(dp[i][j-1]+a[j],mx[j-1]+a[j]);
滚动数组mx[j]表示把数组a的前x个数分成i-1个子段的和的最大值
#include<iostream>
#include<string.h>
#define ll long long
using namespace std;
ll dp[],mx[],a[];
//dp[j]是将数组前j个数分成i组的最大和,mx[j]是将数组a中前j个数分成任意组的最大和的最大值
ll max(ll a,ll b)
{
return a>b?a:b;
}
int main()
{
ll n,m,sum;
while(~scanf("%lld%lld",&m,&n))
{
memset(dp,,sizeof(dp));
memset(mx,,sizeof(mx));
for(int i=;i<=n;i++)
scanf("%lld",&a[i]); for(int i=;i<=m;i++)
{
sum=-;
for(int j=i;j<=n;j++)
{
dp[j]=max(dp[j-]+a[j],mx[j-]+a[j]);
mx[j-]=sum;//sum是将数组a的前j-1个数分成i组的最大和
sum=max(dp[j],sum);//更新sum,为下一次更新mx[j]准备
}
}
cout<<sum<<endl;
}
return ;
}
hdu1024 Max Sum Plus Plus 滚动dp的更多相关文章
- HDU1024 Max Sum Plus Plus 【DP】
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU1024 Max Sum Plus Plus(dp)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 #include<iostream> #include<vector> #i ...
- HDU1024 Max Sum Plus Plus —— DP + 滚动数组
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS ...
- HDU1024 Max Sum Plus Plus (优化线性dp)
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...
- HDU 1024 Max Sum Plus Plus【DP】
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...
- HDU 1024:Max Sum Plus Plus(DP)
http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Problem Description Now I think you ...
- HDU 1024 Max Sum Plus Plus(DP的简单优化)
Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...
- Max Sum—hdu1003(简单DP) 标签: dp 2016-05-05 20:51 92人阅读 评论(0)
Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- HDU 1024:Max Sum Plus Plus(DP,最大m子段和)
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
随机推荐
- jquery.cookie 介绍 和 用法
1.依赖jQuery库 2.浏览器兼容性情况 3.下载 官方github:https://github.com/carhartl/jquery-cookie 4.使用 创建一个整站cookie $.c ...
- Java中的一些代理技术
使用cglib,asm 对接口进行拦截,这里需要调用Invoke方法 final IUserService userService=new UserService(); Enhancer enhanc ...
- swift -pop的简单动画
//1.新建空文件 命名Podfile //2.写入 pod ‘pop’,’~>1.0’ 保存 //3.打开终端,进入项目路径 执行pod install //4.新建桥接头文件 导入#im ...
- 23 DesignPatterns学习笔记:C++语言实现 --- 1.4 Builder
23 DesignPatterns学习笔记:C++语言实现 --- 1.4 Builder 2016-07-21 (www.cnblogs.com/icmzn) 模式理解
- polymer-quick tour of polymer
注册一个元素 <link rel="import" href="bower_components/polymer/polymer.html">//没 ...
- [label][JavaScript扩展] JavaSCript扩展
http://www.idangero.us/sliders/swiper/ ,swipper for mobile terminal.
- Oracle EBS学习网站列表
Oracle官方文档库http://tahiti.oracle.com/http://www.oracle.com/technetwork/documentation/index.html#apps其 ...
- Configuring Oracle E-Business Suite Integrated SOA Gateway Release 12.1.2 and Release 12.1.3 in a Multinode Environment (Doc ID 1081100.1)
Configuring Oracle E-Business Suite Integrated SOA Gateway Release 12.1.2 and Release 12.1.3 in a Mu ...
- jconsole连接远程tomcat
windows(Windows操作系统下的远程监控) 1.编辑文件:在进入到了tomcat中的bin的目录中,进行打开catalina.bat进行编辑文件. 2.添加代码:找到文件中的如下代码 rem ...
- 使用oracle9的 odbc 连接oracle11
客户机上基于Oracle 9i的ODBC数据源,无法连接oracle 11G数据库,提示错误为:error ORA-01017, Invalid Username / Password.奇怪的是:sq ...