Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 41885    Accepted Submission(s): 15095

Problem Description
Now
I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a
brave ACMer, we always challenge ourselves to more difficult problems.
Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But
I`m lazy, I don't want to write a special-judge module, so you don't
have to output m pairs of i and j, just output the maximal summation of
sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^

 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 
Output
Output the maximal summation described above in one line.
 
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
Sample Output
6
8
 
题意:输入有多个样例,每个样例输入只有一行m,n,接下来在同一行给定n个数。输出就是把这n个数分成m个不相交的子段,输出使这m个子段的 和 的最大值。
 
题解:用动态规划,dp[i][j]表示把数组a的前j个数分成i个子段的和。对于于每一个数a[j]要考虑两个状态:即a[j]要么加入与它相邻的前一个子段,要么自己单独成为一个子段,
据此列出动态转移方程为dp[i][j]=max(dp[i][j-1]+a[j],dp[i-1][x]+a[j]),i-1<=x<=j-1,dp[i-1][x]表示把数组a的前x个数分成i-1个子段的和的最大值。
因为n给的范围比较大,直接三层for循环显然会超时。
 

TLE的代码

#include<iostream>
#include<math.h>
#define ll long long
using namespace std;
ll dp[][],a[];//dp[i][j]表示将数组a中前j个数分成 i组的最大和
int main()
{
ll n,m;
while(~scanf("%lld%lld",&m,&n))
{
for(int i=;i<=n;i++)
cin>>a[i];
for(int i=;i<=m;i++)
{
for(int j=i;j<=n;j++)
{
ll temp=-;
for(int x=i-;x<=j-;x++)
{
temp=dp[i-][x]>temp?dp[i-][x]:temp;
}
dp[i][j]=dp[i][j-]+a[j]>temp+a[j]?dp[i][j-]+a[j]:temp+a[j];
} }
cout<<dp[m][n]<<endl;
}
return ;
}

滚动DP优化

对动态转移方程:dp[i][j]=max(dp[i][j-1]+a[j],dp[i-1][x]+a[j]),i-1<=x<=j-1,dp[i-1][x]表示把数组a的前x个数分成i-1个子段的和的最大值。通过转移方程我们可以看出,对于求下一个dp[i][j]我们

只用到它的前两个状态dp[i][j-1]和dp[i-1][x],dp[i][j-1]在上一层循环中已经求出来了,因此我们只要再开一个滚动数组mx[j]来取代dp[i-1][x],随着j的改变不断更新mx数组就可以降低一层循环。

这样动态转移方程就变为:dp[i][j]=max(dp[i][j-1]+a[j],mx[j-1]+a[j]);

滚动数组mx[j]表示把数组a的前x个数分成i-1个子段的和的最大值

#include<iostream>
#include<string.h>
#define ll long long
using namespace std;
ll dp[],mx[],a[];
//dp[j]是将数组前j个数分成i组的最大和,mx[j]是将数组a中前j个数分成任意组的最大和的最大值
ll max(ll a,ll b)
{
return a>b?a:b;
}
int main()
{
ll n,m,sum;
while(~scanf("%lld%lld",&m,&n))
{
memset(dp,,sizeof(dp));
memset(mx,,sizeof(mx));
for(int i=;i<=n;i++)
scanf("%lld",&a[i]); for(int i=;i<=m;i++)
{
sum=-;
for(int j=i;j<=n;j++)
{
dp[j]=max(dp[j-]+a[j],mx[j-]+a[j]);
mx[j-]=sum;//sum是将数组a的前j-1个数分成i组的最大和
sum=max(dp[j],sum);//更新sum,为下一次更新mx[j]准备
}
}
cout<<sum<<endl;
}
return ;
}
 

hdu1024 Max Sum Plus Plus 滚动dp的更多相关文章

  1. HDU1024 Max Sum Plus Plus 【DP】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. HDU1024 Max Sum Plus Plus(dp)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 #include<iostream> #include<vector> #i ...

  3. HDU1024 Max Sum Plus Plus —— DP + 滚动数组

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS ...

  4. HDU1024 Max Sum Plus Plus (优化线性dp)

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...

  5. HDU 1024 Max Sum Plus Plus【DP】

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...

  6. HDU 1024:Max Sum Plus Plus(DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Problem Description Now I think you ...

  7. HDU 1024 Max Sum Plus Plus(DP的简单优化)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

  8. Max Sum—hdu1003(简单DP) 标签: dp 2016-05-05 20:51 92人阅读 评论(0)

    Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  9. HDU 1024:Max Sum Plus Plus(DP,最大m子段和)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. svn建立分支和svn代码合并的操作方法

    首先说下为什么我们需要用到分支-合并.比如项目demo下有两个小组,svn下有一个trunk版.由于客户需求突然变化,导致项目需要做较大改动,此时项目组决定由小组1继续完成原来正进行到一半的工作[某个 ...

  2. CodeForces 687A NP-Hard Problem (二分图)

    题意:给定 n 条边,然后让你把它分成两组,每组都有所有边的一个端点. 析:一开始我是先判定环,以为就不能成立,其实不是这样的,有环也行.用dfs进行搜索,并标记每一个端点,如果标记过并且和以前不一样 ...

  3. Web数据挖掘综述

     

  4. Linux文件备份

    1.tar -P是否保留根目录 -t查看压缩文件内容 -N 201401010备份日期以后 [root@localhost /]# tar -zcPf /tar/data2.tar.gz /etc/* ...

  5. input中的disabled、readonly和hidden

    最近开发项目的时候,遇到一个问题,就是我希望某个input中的值不能被修改,刚开始的时候,我想到的是disabled属性!但是,发现表单提交后,值无法传递过来! 解决方法: 可以设置其readonly ...

  6. java内存溢出异常

    名称 特征 作用 配置参数 异常 程序 计数器 占用内存小,线程私有, 生命周期与线程相同 大致为字节码行号指示器 无 无 虚拟机栈 线程私有,生命周期与线程 相同,使用连续的内存空间 Java 方法 ...

  7. CSS—— em的详解

    字体大小在浏览器的默认样式表中有规定.一般采用em为单位,也就是相对单位,1em=16像素. 同时,像P h1等等标签都采用浏览器默认的em单位,P为1em,h1为2em等等. 两条重要的规则: 1. ...

  8. Project Tango Explorer

    https://sensortower.com/android/ie/projecttango-google/app/project-tango-explorer/com.projecttango.t ...

  9. LR中的迭代次数设置

    在参数化时,对于一次压力测试中均只能用一次的资源应该怎么参数化呢?就是说这些资源用了一次就不能在用了的. --参数化时,在select  next row选择unique,update value o ...

  10. TFS (Team Foundation Server) 2013集成Maven构建

    Team Foundation Server原生就支持跨平台的构建,包括Ant和Maven两种构建方式.通过配置构建服务器,连接TFS源代码库,可以实现持续集成构建,自动检测代码库健康状况,进而实现自 ...