参考:http://www.cppblog.com/wicbnu/archive/2013/03/18/198565.html

我太喜欢用dfs和回溯法了,但是这些暴力的方法加上剪枝之后复杂度依然是很高,显然不能达到题目的要求。

这个时候应该考虑动态规划,并且要复杂度尽量接近O(n^2)的算法。

下面这个方法更加简洁:自长到短找到回文串后,往后dfs,并记录递归深度表示并更新最小划分数。http://fisherlei.blogspot.com/2013/03/leetcode-palindrome-partitioning-ii.html


Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

题解:
类似矩阵连乘的动归思路。
dp[i][j]=min(dp[i][k]+dp[k+1][j]+1), i<=k<j.
但是用这个方程的时间是O(n^3),简化dp[i][j]为dp[i],表示从0到i的minCut.
dp[i]=min(dp[k]+1,       dp[k]+i-k), 0<=k<i.

 (s[k+1, i]是回文串)   (s[k+1, i]不是回文串)

具体代码参见上述链接。

值得注意的是,计算是否为回文数的过程中也要用记忆化搜索才能减少重复比较的次数,it's smart~

MY CODE:

 //
// ParlindromePartitioningII.cpp
// SJMcode
//
// Created by Jiamei Shuai on 13-8-31.
// Copyright (c) 2013年 Jiamei Shuai. All rights reserved.
// #include <vector>
#include <iostream>
#include <string.h>
#include <assert.h>
using namespace std; // 两处优化:
// 1.已经计算过的区间的最短划分次数用map纪录
// 2.回文串的判断结果也要用map记录 class Solution{
public:
int *minCutMat;
vector<vector<int> > map; int IsPalindrome(string &s, int i, int j)
{
if(i>j) return false;
if(map[i][j]!= -)
return map[i][j];
if(i==j)
return map[i][j]=; if(s[i]!=s[j])
return map[i][j]=;
else{
if(j-i==)
return map[i][j]=;
else
return map[i][j]=IsPalindrome(s,i+,j-);
}
} int minCut(string s) // 动态规划 d[i] = min{d[k]+1, d[k]+i-k}, 0<=k<i
{
int n = (int)s.length();
if(n==||n==)
return ; vector<int> min, vtmp;
min.clear();vtmp.clear();map.clear();
for(int i=; i<s.size(); i++)
{
min.push_back();
vtmp.push_back(-);
}
for(int i=; i<s.size(); i++)
map.push_back(vtmp); int tmp, ans;
for(int inter = ; inter<n; inter++)
{
if(IsPalindrome(s, , inter))
min[inter]=;
else{
ans = n+;
for(int k = ; k < inter; k++)
{
if(IsPalindrome(s, k+, inter))
tmp = min[k]+;
else
tmp = min[k] + inter - k;
if(tmp < ans)
ans = tmp;
}
min[inter] = ans;
}
}
return min[n-];
} // 较复杂的算法用dfs或者回溯法都太慢了,加上了所有的剪枝策略还是会超时
// 这种情况大多数都应该使用动态规划,要多总结,少犯错误。 int minCut2(string s) // 总是超时,复杂度太高
//这个方法相当于类似矩阵链乘的算法,dp[i][j] = min(dp[i][k]+dp[k+1][j]), i<=k<j,复杂度是O(n^3)
//可以简化dp[i][j]为dp[i],表示从0到i的minCut
{
int minCutNum = (int)s.size();
int len = (int)s.size(); minCutMat = new int[len*len]; // 注意new int[]而不是()
memset(minCutMat, -, len*len*sizeof(int)); vector<int> vtmp;
vtmp.clear();map.clear();
for(int i=; i<s.size(); i++)
vtmp.push_back(-);
for(int i=; i<s.size(); i++)
map.push_back(vtmp); // Notice: if the string need no split and itself a palindrome, how to handle it? 注意细节
if(IsPalindrome(s, , len-)) return ; split(s, , len-, minCutNum); delete []minCutMat; return minCutNum;
} int split(string &s, int begin, int end, int &minCutNum)
{
if(begin == end) return ; if(IsPalindrome(s, begin, end)) return ; int minCurrentSplit = (int)s.size();
int left,right; for(int i = begin; i < end; i++)
{
assert(begin*s.size()+i < s.size()*s.size());
assert(begin*s.size()+i < s.size()*s.size());
if(minCutMat[begin*s.size()+i] >= )
left = minCutMat[begin*s.size()+i];
else
{
left = split(s, begin, i, minCutNum);
minCutMat[begin*s.size()+i] = left;
}
if(left >= minCutNum) { return <<;} if(minCutMat[(i+)*s.size()+end] >= )
right = minCutMat[(i+)*s.size()+end];
else
{
right = split(s, i+, end, minCutNum);
minCutMat[(i+)*s.size()+end] = right;
}
if(right >= minCutNum) return <<; int tmp = left + + right; minCurrentSplit = min(tmp, minCurrentSplit); if(begin == && end == s.size()-) // outer loop
minCutNum = min(tmp, minCutNum);
}
return minCurrentSplit;
} }; int main()
{
Solution sln;
cout << sln.minCut("apjesgpsxoeiokmqmfgvjslcjukbqxpsobyhjpbgdfruqdkeiszrlmtwgfxyfostpqczidfljwfbbrflkgdvtytbgqalguewnhvvmcgxboycffopmtmhtfizxkmeftcucxpobxmelmjtuzigsxnncxpaibgpuijwhankxbplpyejxmrrjgeoevqozwdtgospohznkoyzocjlracchjqnggbfeebmuvbicbvmpuleywrpzwsihivnrwtxcukwplgtobhgxukwrdlszfaiqxwjvrgxnsveedxseeyeykarqnjrtlaliyudpacctzizcftjlunlgnfwcqqxcqikocqffsjyurzwysfjmswvhbrmshjuzsgpwyubtfbnwajuvrfhlccvfwhxfqthkcwhatktymgxostjlztwdxritygbrbibdgkezvzajizxasjnrcjwzdfvdnwwqeyumkamhzoqhnqjfzwzbixclcxqrtniznemxeahfozp"); return ;
}

附上更简洁的算法:

1:        int minCut(string s) {
: int len = s.size();
: int D[len+];
: bool P[len][len];
: //the worst case is cutting by each char
: for(int i = ; i <= len; i++)
: D[i] = len-i;
: for(int i = ; i < len; i++)
: for(int j = ; j < len; j++)
: P[i][j] = false;
: for(int i = len-; i >= ; i--){
: for(int j = i; j < len; j++){
: if(s[i] == s[j] && (j-i< || P[i+][j-])){
: P[i][j] = true;
: D[i] = min(D[i],D[j+]+);
: }
: }
: }
: return D[]-;
: }

以及使用回溯+剪枝的方法:

:    int minCut(string s) {
: int min = INT_MAX;
: DFS(s, , , min);
: return min;
: }
: void DFS(string &s, int start, int depth, int& min)
: {
: if(start == s.size())
: {
: if(min> depth-)
: min = depth-;
: return;
: }
: for(int i = s.size()-; i>=start; i--) //find the biggest palindrome first
: {
: if(isPalindrome(s, start, i))
: {
: DFS(s, i+, depth+, min);
: }
:
:
: }
: }
: bool isPalindrome(string &s, int start, int end)
: {
: while(start< end)
: {
: if(s[start] != s[end])
: return false;
: start++; end--;
: }
: return true;
: }

总结下来,要学会分析问题,不能一成不变的只用一个算法,可能会非常低效。

Leetcode: Palindrome Partitioning II的更多相关文章

  1. [LeetCode] Palindrome Partitioning II 解题笔记

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  2. LeetCode: Palindrome Partitioning II 解题报告

    Palindrome Partitioning II Given a string s, partition s such that every substring of the partition ...

  3. [LeetCode] Palindrome Partitioning II 拆分回文串之二

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  4. [leetcode]Palindrome Partitioning II @ Python

    原题地址:https://oj.leetcode.com/problems/palindrome-partitioning-ii/ 题意: Given a string s, partition s  ...

  5. LeetCode:Palindrome Partitioning,Palindrome Partitioning II

    LeetCode:Palindrome Partitioning 题目如下:(把一个字符串划分成几个回文子串,枚举所有可能的划分) Given a string s, partition s such ...

  6. leetcode@ [131/132] Palindrome Partitioning & Palindrome Partitioning II

    https://leetcode.com/problems/palindrome-partitioning/ Given a string s, partition s such that every ...

  7. 【leetcode】Palindrome Partitioning II

    Palindrome Partitioning II Given a string s, partition s such that every substring of the partition ...

  8. leetcode 131. Palindrome Partitioning 、132. Palindrome Partitioning II

    131. Palindrome Partitioning substr使用的是坐标值,不使用.begin()..end()这种迭代器 使用dfs,类似于subsets的题,每次判断要不要加入这个数 s ...

  9. 【LeetCode】132. Palindrome Partitioning II

    Palindrome Partitioning II  Given a string s, partition s such that every substring of the partition ...

随机推荐

  1. 无法对 索引 'IndexName' 执行 删除,因为它不存在,或者您没有所需的权限。

    先写结论: 语法:  DROP INDEX 表名.索引名 如果索引明明存在..却报标题上那个错..请直接去看是否是表名与库中的不一样.. 请一定去检查一下..别问我为什么这么说.. if exists ...

  2. [Asp.net]常见数据导入Excel,Excel数据导入数据库解决方案,总有一款适合你!

    引言 项目中常用到将数据导入Excel,将Excel中的数据导入数据库的功能,曾经也查找过相关的内容,将曾经用过的方案总结一下. 方案一 NPOI NPOI 是 POI 项目的 .NET 版本.POI ...

  3. [慢查优化]建索引时注意字段选择性 & 范围查询注意组合索引的字段顺序

    文章转自:http://www.cnblogs.com/zhengyun_ustc/p/slowquery2.html 写在前面的话: 之前曾说过"不要求每个人一定理解 联表查询(join/ ...

  4. Maven Super POM

    Maven super POM defines some properties. Three ways to find it ${M2_HOME}/lib/maven-model-builder-3. ...

  5. Hibernate之缓存的原理

    一.关于缓存: 其实对于缓存而言,它其实就是一块内存空间,在这个空间中存放了相互关联的持久化对象, 也就是存在于Session缓存内的对象,那么Session负责根据持久化对象的状态变化来同步的更新数 ...

  6. 转载自lanceyan: 一致性hash和solr千万级数据分布式搜索引擎中的应用

    一致性hash和solr千万级数据分布式搜索引擎中的应用 互联网创业中大部分人都是草根创业,这个时候没有强劲的服务器,也没有钱去买很昂贵的海量数据库.在这样严峻的条件下,一批又一批的创业者从创业中获得 ...

  7. linux之netstat命令

    netstat用于显示各种网络相关的信息,如网络连接,路由表接口状态(interface statistics), masquerade连接,多播成员(Multicast Memberships)等等 ...

  8. linux下php-mysql拓展安装

    今天遇到一个奇怪的问题: 在服务器A上部署应用,在服务器B上部署数据库和缓存. 服务器A:apache2.2,php5.3 服务器B:mysql5.5,redis2.4 问题现象: 本地远程连接服务器 ...

  9. 在MonthCalendar控件中选中日期

    Calendar.MONTH Calendar now=Calendar.getInstance();System.out.print(now.get(Calendar.MONTH));得到的月份少1 ...

  10. studing(来自转载)

    1.getchar(): http://www.cnblogs.com/jiangjun/archive/2012/05/16/2503676.html 2.gets()和scanf( ): http ...