参考:http://www.cppblog.com/wicbnu/archive/2013/03/18/198565.html

我太喜欢用dfs和回溯法了,但是这些暴力的方法加上剪枝之后复杂度依然是很高,显然不能达到题目的要求。

这个时候应该考虑动态规划,并且要复杂度尽量接近O(n^2)的算法。

下面这个方法更加简洁:自长到短找到回文串后,往后dfs,并记录递归深度表示并更新最小划分数。http://fisherlei.blogspot.com/2013/03/leetcode-palindrome-partitioning-ii.html


Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

题解:
类似矩阵连乘的动归思路。
dp[i][j]=min(dp[i][k]+dp[k+1][j]+1), i<=k<j.
但是用这个方程的时间是O(n^3),简化dp[i][j]为dp[i],表示从0到i的minCut.
dp[i]=min(dp[k]+1,       dp[k]+i-k), 0<=k<i.

 (s[k+1, i]是回文串)   (s[k+1, i]不是回文串)

具体代码参见上述链接。

值得注意的是,计算是否为回文数的过程中也要用记忆化搜索才能减少重复比较的次数,it's smart~

MY CODE:

 //
// ParlindromePartitioningII.cpp
// SJMcode
//
// Created by Jiamei Shuai on 13-8-31.
// Copyright (c) 2013年 Jiamei Shuai. All rights reserved.
// #include <vector>
#include <iostream>
#include <string.h>
#include <assert.h>
using namespace std; // 两处优化:
// 1.已经计算过的区间的最短划分次数用map纪录
// 2.回文串的判断结果也要用map记录 class Solution{
public:
int *minCutMat;
vector<vector<int> > map; int IsPalindrome(string &s, int i, int j)
{
if(i>j) return false;
if(map[i][j]!= -)
return map[i][j];
if(i==j)
return map[i][j]=; if(s[i]!=s[j])
return map[i][j]=;
else{
if(j-i==)
return map[i][j]=;
else
return map[i][j]=IsPalindrome(s,i+,j-);
}
} int minCut(string s) // 动态规划 d[i] = min{d[k]+1, d[k]+i-k}, 0<=k<i
{
int n = (int)s.length();
if(n==||n==)
return ; vector<int> min, vtmp;
min.clear();vtmp.clear();map.clear();
for(int i=; i<s.size(); i++)
{
min.push_back();
vtmp.push_back(-);
}
for(int i=; i<s.size(); i++)
map.push_back(vtmp); int tmp, ans;
for(int inter = ; inter<n; inter++)
{
if(IsPalindrome(s, , inter))
min[inter]=;
else{
ans = n+;
for(int k = ; k < inter; k++)
{
if(IsPalindrome(s, k+, inter))
tmp = min[k]+;
else
tmp = min[k] + inter - k;
if(tmp < ans)
ans = tmp;
}
min[inter] = ans;
}
}
return min[n-];
} // 较复杂的算法用dfs或者回溯法都太慢了,加上了所有的剪枝策略还是会超时
// 这种情况大多数都应该使用动态规划,要多总结,少犯错误。 int minCut2(string s) // 总是超时,复杂度太高
//这个方法相当于类似矩阵链乘的算法,dp[i][j] = min(dp[i][k]+dp[k+1][j]), i<=k<j,复杂度是O(n^3)
//可以简化dp[i][j]为dp[i],表示从0到i的minCut
{
int minCutNum = (int)s.size();
int len = (int)s.size(); minCutMat = new int[len*len]; // 注意new int[]而不是()
memset(minCutMat, -, len*len*sizeof(int)); vector<int> vtmp;
vtmp.clear();map.clear();
for(int i=; i<s.size(); i++)
vtmp.push_back(-);
for(int i=; i<s.size(); i++)
map.push_back(vtmp); // Notice: if the string need no split and itself a palindrome, how to handle it? 注意细节
if(IsPalindrome(s, , len-)) return ; split(s, , len-, minCutNum); delete []minCutMat; return minCutNum;
} int split(string &s, int begin, int end, int &minCutNum)
{
if(begin == end) return ; if(IsPalindrome(s, begin, end)) return ; int minCurrentSplit = (int)s.size();
int left,right; for(int i = begin; i < end; i++)
{
assert(begin*s.size()+i < s.size()*s.size());
assert(begin*s.size()+i < s.size()*s.size());
if(minCutMat[begin*s.size()+i] >= )
left = minCutMat[begin*s.size()+i];
else
{
left = split(s, begin, i, minCutNum);
minCutMat[begin*s.size()+i] = left;
}
if(left >= minCutNum) { return <<;} if(minCutMat[(i+)*s.size()+end] >= )
right = minCutMat[(i+)*s.size()+end];
else
{
right = split(s, i+, end, minCutNum);
minCutMat[(i+)*s.size()+end] = right;
}
if(right >= minCutNum) return <<; int tmp = left + + right; minCurrentSplit = min(tmp, minCurrentSplit); if(begin == && end == s.size()-) // outer loop
minCutNum = min(tmp, minCutNum);
}
return minCurrentSplit;
} }; int main()
{
Solution sln;
cout << sln.minCut("apjesgpsxoeiokmqmfgvjslcjukbqxpsobyhjpbgdfruqdkeiszrlmtwgfxyfostpqczidfljwfbbrflkgdvtytbgqalguewnhvvmcgxboycffopmtmhtfizxkmeftcucxpobxmelmjtuzigsxnncxpaibgpuijwhankxbplpyejxmrrjgeoevqozwdtgospohznkoyzocjlracchjqnggbfeebmuvbicbvmpuleywrpzwsihivnrwtxcukwplgtobhgxukwrdlszfaiqxwjvrgxnsveedxseeyeykarqnjrtlaliyudpacctzizcftjlunlgnfwcqqxcqikocqffsjyurzwysfjmswvhbrmshjuzsgpwyubtfbnwajuvrfhlccvfwhxfqthkcwhatktymgxostjlztwdxritygbrbibdgkezvzajizxasjnrcjwzdfvdnwwqeyumkamhzoqhnqjfzwzbixclcxqrtniznemxeahfozp"); return ;
}

附上更简洁的算法:

1:        int minCut(string s) {
: int len = s.size();
: int D[len+];
: bool P[len][len];
: //the worst case is cutting by each char
: for(int i = ; i <= len; i++)
: D[i] = len-i;
: for(int i = ; i < len; i++)
: for(int j = ; j < len; j++)
: P[i][j] = false;
: for(int i = len-; i >= ; i--){
: for(int j = i; j < len; j++){
: if(s[i] == s[j] && (j-i< || P[i+][j-])){
: P[i][j] = true;
: D[i] = min(D[i],D[j+]+);
: }
: }
: }
: return D[]-;
: }

以及使用回溯+剪枝的方法:

:    int minCut(string s) {
: int min = INT_MAX;
: DFS(s, , , min);
: return min;
: }
: void DFS(string &s, int start, int depth, int& min)
: {
: if(start == s.size())
: {
: if(min> depth-)
: min = depth-;
: return;
: }
: for(int i = s.size()-; i>=start; i--) //find the biggest palindrome first
: {
: if(isPalindrome(s, start, i))
: {
: DFS(s, i+, depth+, min);
: }
:
:
: }
: }
: bool isPalindrome(string &s, int start, int end)
: {
: while(start< end)
: {
: if(s[start] != s[end])
: return false;
: start++; end--;
: }
: return true;
: }

总结下来,要学会分析问题,不能一成不变的只用一个算法,可能会非常低效。

Leetcode: Palindrome Partitioning II的更多相关文章

  1. [LeetCode] Palindrome Partitioning II 解题笔记

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  2. LeetCode: Palindrome Partitioning II 解题报告

    Palindrome Partitioning II Given a string s, partition s such that every substring of the partition ...

  3. [LeetCode] Palindrome Partitioning II 拆分回文串之二

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  4. [leetcode]Palindrome Partitioning II @ Python

    原题地址:https://oj.leetcode.com/problems/palindrome-partitioning-ii/ 题意: Given a string s, partition s  ...

  5. LeetCode:Palindrome Partitioning,Palindrome Partitioning II

    LeetCode:Palindrome Partitioning 题目如下:(把一个字符串划分成几个回文子串,枚举所有可能的划分) Given a string s, partition s such ...

  6. leetcode@ [131/132] Palindrome Partitioning & Palindrome Partitioning II

    https://leetcode.com/problems/palindrome-partitioning/ Given a string s, partition s such that every ...

  7. 【leetcode】Palindrome Partitioning II

    Palindrome Partitioning II Given a string s, partition s such that every substring of the partition ...

  8. leetcode 131. Palindrome Partitioning 、132. Palindrome Partitioning II

    131. Palindrome Partitioning substr使用的是坐标值,不使用.begin()..end()这种迭代器 使用dfs,类似于subsets的题,每次判断要不要加入这个数 s ...

  9. 【LeetCode】132. Palindrome Partitioning II

    Palindrome Partitioning II  Given a string s, partition s such that every substring of the partition ...

随机推荐

  1. DEDEcms 在php5.4以上 后台登录空白解决办法

    本次环境php5.5 首先确定 dede data文件夹已经有写入权限 775 777都可以 然后再远程桌面或者FTP修改 include/userlogin.class.php 文件 注释掉下面六句 ...

  2. juery学习6——焦点事件

    参考资料 深入理解javascript中的焦点管理:http://www.cnblogs.com/xiaohuochai/p/5874447.html

  3. 如何让vim自动显示函数声明-使用 echofunc.vim插件

    echofunc.vim可以显示函数的declaration, 默认的是针对c/c++, 对于php, 只要 启用了 ctags都可以, 因为echofunc是从tags file中获取数据的... ...

  4. Android之弹出/隐藏系统软键盘

    Android弹出/隐藏系统软键盘的代码如下: InputMethodManager imm = (InputMethodManager) getSystemService(Context.INPUT ...

  5. Sql Server 学习链接

    避免SQL全表查询:http://www.dedecms.com/knowledge/data-base/sql-server/2012/0821/11698.html?jdfwkey=n3nuq

  6. 如何实现 javascript “同步”调用 app 代码

    在 App 混合开发中,app 层向 js 层提供接口有两种方式,一种是同步接口,一种一异步接口(不清楚什么是同步的请看这里的讨论).为了保证 web 流畅,大部分时候,我们应该使用异步接口,但是某些 ...

  7. SpringMvc核心流程以及入门案例的搭建

    1.什么是SpringMvc Spring MVC属于SpringFrameWork的后续产品,已经融合在Spring Web Flow里面.Spring 框架提供了构建 Web 应用程序的全功能 M ...

  8. ASP.NET中Ajax的用法

    在ASP.NET中应用Ajax的格式如下: 前台代码(用JQuery库) $.ajax({ type: "POST", async: true, url: "../Aja ...

  9. 第三篇 基于.net搭建热插拔式web框架(重造Controller)

    由于.net MVC 的controller 依赖于HttpContext,而我们在上一篇中的沙箱模式已经把一次http请求转换为反射调用,并且http上下文不支持跨域,所以我们要重造一个contro ...

  10. c++虚析构函数

    虚析构函数的作用主要是当通过基类指针删除派生类对象时,调用派生类的析构函数(如果没有将不会调用派生类析构函数) #include <iostream> using namespace st ...