# -*- coding: utf-8 -*-
from pandas import read_csv
import numpy as np
from sklearn.datasets.base import Bunch
import pickle # 导入cPickle包并且取一个别名pickle #持久化类
from sklearn.feature_extraction.text import TfidfVectorizer
import jieba
import operator # 排序用
from sklearn import metrics
from sklearn.externals import joblib
import xlwt def importSmallContentdata(file, data, art, label, f, Slast, Snew):
dataset = read_csv(file)
Sdata = dataset.values[:, :]
print(type(Sdata)) if f == 1:
for line in Sdata:
ls = []
ls.append(line[14])
ls.append(line[15])
ls.append(line[16])
ls.append(line[17])
Slast.append(ls)
# print(len(Slast))
# print("需要对照的小类数据准备完毕") '''找到smalli不为0的装入Straindata,把数据分开'''
for smalli in range(14, 18):
# print(smalli)
count = 0
for line in Sdata:
count = count + 1
if line[smalli] != '' and line[smalli] != 0:
k = 1
ls = []
for i in line:
if k == 1:
#art.append(i)
k = k + 1
continue
if k == 11: # k为14并不代表是line[14],因为line是从0开始
break
ls.append(float(i))
k = k + 1
data.append(ls)
label.append(line[smalli])
if f == 1:
Snew.append(count) for line in Sdata:
art.append(line[0])
# print("为什么都超限",len(Snew)) def getKvector(train_set, vec, n):
class obj:
def __init__(self):
self.key = 0
self.weight = 0.0 nonzero = train_set.tdm.nonzero()
k = 0
lis = []
gather = []
p = -1
for i in nonzero[0]:
p = p + 1
if k == i:
a = obj()
a.key = nonzero[1][p]
a.weight = train_set.tdm[i, nonzero[1][p]]
lis.append(a)
else:
lis.sort(key=lambda obj: obj.weight, reverse=True) # 对链表内为类对象的排序
gather.append(lis)
while k < i:
k = k + 1
lis = []
a = obj()
a.key = nonzero[1][p]
a.weight = train_set.tdm[i, nonzero[1][p]]
lis.append(a)
gather.append(lis) # gather存储的是每条数据的事实描述的特征向量,已经从小到大排好了,只不过每个存既有key又有weight # 我们只要key,不再需要weight sj = 1
for i in gather:
ls = []
for j in i:
sj = sj + 1
ls.append(float(j.key))
while sj <= n:
sj = sj + 1
ls.append(-1)
sj = 1
vec.append(ls) '''读取停用词''' def _readfile(path):
with open(path, "rb") as fp:
content = fp.read()
return content ''' 读取bunch对象''' def _readbunchobj(path):
with open(path, "rb") as file_obj:
bunch = pickle.load(file_obj)
return bunch '''写入bunch对象''' def _writebunchobj(path, bunchobj):
with open(path, "wb") as file_obj:
pickle.dump(bunchobj, file_obj) def buildtrainbunch(bunch_path, art_train, trainlabel):
bunch = Bunch(label=[], contents=[])
for item1 in trainlabel:
bunch.label.append(item1) # trainContentdatasave=[] #存储所有训练和测试数据的分词
for item2 in art_train:
item2 = str(item2)
item2 = item2.replace("\r\n", "")
item2 = item2.replace(" ", "")
content_seg = jieba.cut(item2)
save2 = ''
for item3 in content_seg:
if len(item3) > 1 and item3 != '\r\n':
# trainContentdatasave.append(item3)
save2 = save2 + "," + item3
bunch.contents.append(save2)
with open(bunch_path, "wb") as file_obj:
pickle.dump(bunch, file_obj)
print("构建训练数据文本对象结束!!!") def buildtestbunch(bunch_path, art_test, testlabel):
bunch = Bunch(label=[], contents=[])
for item1 in testlabel:
bunch.label.append(item1) # testContentdatasave=[] #存储所有训练和测试数据的分词
for item2 in art_test:
item2 = str(item2)
item2 = item2.replace("\r\n", "")
item2 = item2.replace(" ", "")
content_seg = jieba.cut(item2)
save2 = ''
for item3 in content_seg:
if len(item3) > 1 and item3 != '\r\n':
# testContentdatasave.append(item3)
save2 = save2 + "," + item3
bunch.contents.append(save2)
with open(bunch_path, "wb") as file_obj:
pickle.dump(bunch, file_obj)
print("构建测试数据文本对象结束!!!") def vector_space(stopword_path, bunch_path, space_path):
stpwrdlst = _readfile(stopword_path).splitlines() # 读取停用词
bunch = _readbunchobj(bunch_path) # 导入分词后的词向量bunch对象
# 构建tf-idf词向量空间对象
tfidfspace = Bunch(label=bunch.label, tdm=[], vocabulary={}) # 权重矩阵tdm,其中,权重矩阵是一个二维矩阵,tdm[i][j]表示,第j个词(即词典中的序号)在第i个类别中的IF-IDF值 # 使用TfidVectorizer初始化向量空间模型
vectorizer = TfidfVectorizer(stop_words=stpwrdlst, sublinear_tf=True, max_df=0.5, min_df=0.0001, use_idf=True,
max_features=15000)
# print(vectorizer)
# 文本转为词频矩阵,单独保存字典文件
tfidfspace.tdm = vectorizer.fit_transform(bunch.contents)
tfidfspace.vocabulary = vectorizer.vocabulary_
# 创建词袋的持久化
_writebunchobj(space_path, tfidfspace)
print("if-idf词向量空间实例创建成功!!!") def testvector_space(stopword_path, bunch_path, space_path, train_tfidf_path):
stpwrdlst = _readfile(stopword_path).splitlines() # 把停用词变成列表
bunch = _readbunchobj(bunch_path)
tfidfspace = Bunch(label=bunch.label, tdm=[], vocabulary={})
# 导入训练集的TF-IDF词向量空间 ★★
trainbunch = _readbunchobj(train_tfidf_path)
tfidfspace.vocabulary = trainbunch.vocabulary vectorizer = TfidfVectorizer(stop_words=stpwrdlst, sublinear_tf=True, max_df=0.7, vocabulary=trainbunch.vocabulary,
min_df=0.001) tfidfspace.tdm = vectorizer.fit_transform(bunch.contents)
_writebunchobj(space_path, tfidfspace)
print("if-idf词向量空间实例创建成功!!!")
if __name__=="__main__":  

    Stestdata = []
Stestlabel = []
Sart_test = [] Slast = []
Snew = [] '''============================先导入数据=================================='''
file_test = 'F:/goverment/excel operating/all_tocai_train.csv' importSmallContentdata(file_test, Stestdata, Sart_test, Stestlabel, 1, Slast, Snew)
#print(Sart_test)
# print("Stestlabel" ,len(Stestlabel)) # print("小类导入数据完毕") # print("大类标签导入完毕")#共1329*4 '''==========================================================tf-idf对Bar进行文本特征提取============================================================================'''
# 导入分词后的词向量bunch对象
test_bunch_path = "F:/goverment/excel operating/trainbunch.bat"
test_space_path = "F:/goverment/excel operating/traintfdifspace.dat"
stopword_path = "F:/goverment/excel operating/hlt_stop_words.txt" '''============================================================tf-idf对Sart进行文本特征提取==============================================================================''' buildtestbunch(test_bunch_path, Sart_test, Stestlabel) testvector_space(stopword_path, test_bunch_path, test_space_path, test_space_path) test_set = _readbunchobj(test_space_path) '''测试数据''' #获取已知 id 找 文本
dic={}
for i in test_set.vocabulary.keys():
dic[test_set.vocabulary[i]]=i
#print(dic)

test_set分为三部分

查看test_set.tdm

print(test_set.tdm)
(0, 3836) 0.0963936202992
(0, 3780) 0.264296259679
(0, 3329) 0.237469184748
(0, 3299) 0.227380842236
(0, 2870) 0.169936848661
(0, 2708) 0.196690909187
(0, 2576) 0.323459018807
(0, 2431) 0.293877639243
(0, 2424) 0.269994966851
(0, 2385) 0.16602904382
(0, 2174) 0.250705638585
(0, 2128) 0.223109589522
(0, 1998) 0.323459018807
(0, 1099) 0.237469184748
(0, 795) 0.293877639243
(0, 687) 0.306155021043
(1, 4127) 0.158745878875
(1, 4075) 0.187148908824
(1, 4066) 0.275285441964
(1, 3506) 0.325600030259
(1, 3329) 0.271913955503
(1, 2512) 0.30263228246
(1, 2385) 0.190111462595
(1, 2121) 0.370376566292
(1, 1555) 0.325600030259
: :
(1437, 790) 0.216605181177
(1437, 784) 0.30372112351
(1437, 558) 0.20127256985
(1438, 4279) 0.240643793924
(1438, 4276) 0.118606614328
(1438, 4184) 0.148565457218
(1438, 4107) 0.185731268834
(1438, 4014) 0.154101569448
(1438, 3877) 0.220155031015
(1438, 3298) 0.245309299377
(1438, 2933) 0.318303833306
(1438, 2383) 0.0923818814565
(1438, 2378) 0.213187531379
(1438, 2092) 0.263926619628
(1438, 2091) 0.263926619628
(1438, 1969) 0.15613334884
(1438, 1802) 0.144868484461
(1438, 1714) 0.256704677923
(1438, 1447) 0.309102127772
(1438, 1411) 0.226077842579
(1438, 1010) 0.116062811153
(1438, 997) 0.263926619628
(1438, 648) 0.15613334884
(1438, 640) 0.157728638816
(1438, 565) 0.232695024234

打印出分词及权重

    #各个文本的词语及权重
dataset = read_csv(file_test)
Sdata = dataset.values[:, :]
print(len(Sdata)) #print(nonzero[1]) myexcel = xlwt.Workbook()
sheet = myexcel.add_sheet("sheet1")
for k in range(len(Sdata)):#遍历每一条文本
nonzero=test_set.tdm[k].nonzero()
ls=[]
for i in range(len(nonzero[1])):
b=test_set.tdm[k, nonzero[1][i]]*100 #test_set.tdm[k, nonzero[1][i]]是第k条文本中,第i个权重非零的词权重
a= dic[nonzero[1][i]] +" "+str(round(b,2))+"%"
ls.append(a) for i in range(len(nonzero[1])):
sheet.write(k,i,str(ls[i])) myexcel.save("out_vector.xls")

运行结果如下:

 画出3d图:还可以转动呢

python文本挖掘输出权重,词频等信息,画出3d权重图的更多相关文章

  1. Python 日志输出中添加上下文信息

    Python日志输出中添加上下文信息 除了传递给日志记录函数的参数(如msg)外,有时候我们还想在日志输出中包含一些额外的上下文信息.比如,在一个网络应用中,可能希望在日志中记录客户端的特定信息,如: ...

  2. Caffe 根据log信息画出loss,accuracy曲线

    在执行训练的过程中,若指定了生成log信息,log信息包含初始化,网络结构初始化和训练过程随着迭代数的loss信息. 注意生成的log文件可能没有.log后缀,那么自己加上.log后缀.如我的log信 ...

  3. CSS3简单画出3d图形

    1.气球 2.泳圈 1.2两图实现代码分别如下: <html> <head> <meta charset="utf-8"> <meta h ...

  4. 使用pangolin库画出轨迹

    https://github.com/stevenlovegrove/Pangolin cmake_minimum_required(VERSION 2.8) project(chapter3) ) ...

  5. 【转】Python之向日志输出中添加上下文信息

    [转]Python之向日志输出中添加上下文信息 除了传递给日志记录函数的参数(如msg)外,有时候我们还想在日志输出中包含一些额外的上下文信息.比如,在一个网络应用中,可能希望在日志中记录客户端的特定 ...

  6. 关于python的中国历年城市天气信息爬取

    一.主题式网络爬虫设计方案(15分)1.主题式网络爬虫名称 关于python的中国城市天气网爬取 2.主题式网络爬虫爬取的内容与数据特征分析 爬取中国天气网各个城市每年各个月份的天气数据, 包括最高城 ...

  7. [python] 常用正则表达式爬取网页信息及分析HTML标签总结【转】

    [python] 常用正则表达式爬取网页信息及分析HTML标签总结 转http://blog.csdn.net/Eastmount/article/details/51082253 标签: pytho ...

  8. Python日志输出——logging模块

    Python日志输出——logging模块 标签: loggingpythonimportmodulelog4j 2012-03-06 00:18 31605人阅读 评论(8) 收藏 举报 分类: P ...

  9. python爬虫之12306网站--车站信息查询

    python爬虫查询车站信息 目录: 1.找到要查询的url 2.对信息进行分析 3.对信息进行处理 python爬虫查询全拼相同的车站 目录: 1.找到要查询的url 2.对信息进行分析 3.对信息 ...

随机推荐

  1. iOS动画进阶 - 手摸手教你写ShineButton动画

    移动端访问不佳,请访问我的个人博客 前段时间在github上看见一个非常nice的动画效果,可惜是安卓的,想着用swift写一个iOS版的,下下来源代码研究了一下,下面是我写代码的心路历程 先上图和d ...

  2. [参考]ASCII对照表 及 字符与二进制、十进制、16进制之间的转化(C/C++)

    第1节 ASCII码对照表 1.1 ASCII控制字符 1.2 ASCII可显示字符 第2节字符的进制转换 2.1 获取字符(8位)的上四位和下四位 2.2 获取字符(上表中的‘图形’)所对应的十六进 ...

  3. python2.7和python3.6共存,使用pip安装第三方库

    因为一般情况下,window命令行运行pip,默认的情况是运行python3.6的pip,安装第三方库的路径也是python3.6,安装路径是: 如何运行在2.7环境下安装PIP呢?有网上的教程说需要 ...

  4. python 在列表中添加元组元素,按照元组第一个值进行排序

    >>> import bisect >>> scores = [(, , , , 'python')] >>> bisect.insort(sco ...

  5. apache配置文件详解与优化

    apache配置文件详解与优化 一.总结 一句话总结:结合apache配置文件中的英文说明和配置详解一起看 1.apache模块配置用的什么标签? IfModule 例如: <IfModule ...

  6. Mongo Plugin插件(编辑器PyCharm的Mongo插件安装与使用)

    博主接触到MongoDB数据库.用普通的Navicat工具 是不支持的 正准备重新安装一款对应的可视化工具.刚好发现在PyCharm编辑中有连接mongoDB数据的插件 Mongo Plugin 这里 ...

  7. Leetcode 62

    //从理解二维dp到简化成一维dp我用了一年的时间class Solution { public: int uniquePaths(int m, int n) { vector<); ;i &l ...

  8. URAL 1136 Parliament (DFS)

    题意 输入一棵树的后缀表达式(按左-右-中顺序访问),这棵树的每一个结点的数值都比它的左子树结点的数值大,而比它的右子树结点的数值小,要求输出其按右-左-中顺序访问的表达式.所有的数都为正整数,而且不 ...

  9. Zynq软硬件协同设计 总结一

    1.Xilinx在2012年推出了新一代的开发工具Vivado开发套件,目前的7系列FPGA既可以用以往的ISE或者XPS进行开发,也可以使用Vivado(为瓦度),而6系列等以前的产品智能使用ISE ...

  10. 关于React setState的实现原理(三)

    前面提到事务即将结束时,会去调用FLUSH_BATCHED_UPDATES的flushBatchedUpdates方法执行批量更新,该方法会去遍历dirtyComponents,对每一项执行perfo ...