首先发现这个插入的非常有特点,我们可以直接利用这个特殊的性质在\(Trie\)树上模拟指针的进退

之后得到了\(Trie\)树,先无脑建出\(AC\)机

之后考虑一下如何写暴力

最简单的暴力对于每一个询问直接在\(AC\)机上匹配之后跳\(fail\),跳到多少次\(fail\)就代表出现了几次

显然这并不能通过

考虑一下优雅的跳\(fail\)

发现\(fail\)指针建出来恰好是一个树的结构,因为一个点的\(fail\)只能指向唯一的一个点

把这样一棵\(fail\)树建出来,我们直接在\(fail\)树上判断另一个串的结束标记是否在这个点到根的路径上就好了

可以对\(fail\)树搞一个\(dfs\)序,之后把问题转化为单点加,区间查显然可以直接用一个树状数组来维护

但是这个样子还是要对每一个串都进行一遍这样的操作

但是考虑到每一个查询操作有很多共用的节点,我们可以直接按照\(Trie\)上的顺序离线下来,之后利用大量重复的这一特性去统计答案

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#define re register
#define maxn 100005
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define lowbit(x) ((x)&(-x))
struct E
{
int v,nxt;
}e[maxn<<1];
int head[maxn],fa[maxn];
int n,m,to[maxn],dfn[maxn],DFN[maxn];
int cnt,num,tot,__,t;
struct Ask
{
int x,y,rk,ans;
}a[maxn];
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
inline void add_edge(int x,int y)
{
e[++num].v=y;
e[num].nxt=head[x];
head[x]=num;
}
char S[maxn];
int c[maxn],sum[maxn];
inline void add(int x,int val){for(re int i=x;i<=cnt+1;i+=lowbit(i)) c[i]+=val;}
inline int ask(int x){int now=0;for(re int i=x;i;i-=lowbit(i)) now+=c[i];return now;}
int son[maxn][26],trie[maxn][26],fail[maxn],Ans[maxn];
inline void ins()
{
int now=0;
fa[now]=0;
scanf("%s",S+1);
int len=strlen(S+1);
for(re int i=1;i<=len;i++)
{
if(S[i]=='B')
{
now=fa[now];
continue;
}
if(S[i]=='P')
{
to[++tot]=now;
continue;
}
if(!son[now][S[i]-'a']) son[now][S[i]-'a']=trie[now][S[i]-'a']=++cnt,fa[cnt]=now;
now=son[now][S[i]-'a'];
}
}
inline void Build()
{
std::queue<int> q;
for(re int i=0;i<26;i++) if(son[0][i]) q.push(son[0][i]);
while(!q.empty())
{
int k=q.front();q.pop();
for(re int i=0;i<26;i++)
if(son[k][i]) fail[son[k][i]]=son[fail[k]][i],q.push(son[k][i]);
else son[k][i]=son[fail[k]][i];
}
}
inline int cmp(Ask A,Ask B)
{
return dfn[A.x]<dfn[B.x];
}
void DFS(int x)
{
dfn[x]=++__;
if(x!=fail[x]) add_edge(fail[x],x);//printf("%d\n",x);
for(re int i=0;i<26;i++)
if(trie[x][i]) DFS(trie[x][i]);
}
void dfs(int x,int F)
{
sum[x]=1;DFN[x]=++__;
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].v!=F)
{
dfs(e[i].v,x);
sum[x]+=sum[e[i].v];
}
}
void Dfs(int x)
{
__++;
add(DFN[x],1);
while(a[t].x==x)
{
int Y=to[a[t].y];
a[t].ans=ask(DFN[Y]+sum[Y]-1)-ask(DFN[Y]-1);
t++;
}
for(re int i=0;i<26;i++)
if(trie[x][i]) Dfs(trie[x][i]);
add(DFN[x],-1);
}
int main()
{
ins();
Build(),DFS(0);
n=read();
for(re int i=1;i<=n;i++) a[i].x=read(),a[i].y=read(),a[i].rk=i,std::swap(a[i].x,a[i].y),a[i].x=to[a[i].x];
std::sort(a+1,a+n+1,cmp);
__=0,dfs(0,0),__=0;t=1;
Dfs(0);
for(re int i=1;i<=n;i++) Ans[a[i].rk]=a[i].ans;
for(re int i=1;i<=n;i++) printf("%d\n",Ans[i]);
return 0;
}

【[NOI2011]阿狸的打字机】的更多相关文章

  1. BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2545  Solved: 1419[Submit][Sta ...

  2. BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )

    一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...

  3. [NOI2011]阿狸的打字机(好题!!!!)

    2785: [NOI2011]阿狸的打字机 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 7  Solved: 3[Submit][Status][We ...

  4. P2414 [NOI2011]阿狸的打字机

    P2414 [NOI2011]阿狸的打字机 AC自动机+树状数组 优质题解 <------题目分析 先AC自动机搞出Trie图 然后根据fail指针建一只新树 把树映射(拍扁)到一个序列上,用树 ...

  5. 【BZOJ2434】[NOI2011]阿狸的打字机 AC自动机+DFS序+树状数组

    [BZOJ2434][NOI2011]阿狸的打字机 Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P ...

  6. [NOI2011]阿狸的打字机 --- AC自动机 + 树状数组

    [NOI2011] 阿狸的打字机 题目描述: 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机. 打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母.经阿狸研究发现, ...

  7. BZOJ2434 [Noi2011]阿狸的打字机 【AC自动机 + fail树 + 树状数组】

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 3610  Solved: 1960 [Submit][S ...

  8. BZOJ2434: [NOI2011]阿狸的打字机(AC自动机+dfs序+树状数组)

    [NOI2011]阿狸的打字机 题目链接:https://www.luogu.org/problemnew/show/P2414 题目背景 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机. ...

  9. bzoj 2434 [Noi2011]阿狸的打字机 AC自动机

    [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4001  Solved: 2198[Submit][Status][D ...

  10. 洛谷 P2414 [NOI2011]阿狸的打字机 解题报告

    P2414 [NOI2011]阿狸的打字机 题目背景 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机. 题目描述 打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母 ...

随机推荐

  1. select2 下拉搜索 可编辑可搜索 / 只可搜索

    官网 (http://select2.github.io/examples.html) <!--引入select2需要的文件--> <script type="text/j ...

  2. 初识JSP,第一天

    1.什么JSP java Server Page java 服务端的页面,它和servlet 一样可以提供动态的html 响应. 不同的是 servlet 以 java 代码 为主 jsp 以html ...

  3. C#读取MySql表字段出现System.Byte[]问题

     记录下,用了多字段拼接后在程序中查询出的结果为System.Byte[],而在数据库中查正常 解决办法为:加Convert转换编码   select CONVERT((CASE background ...

  4. [javaSE] GUI(事件监听机制)

    外部动作——>事件源(组件)——>事件对象——>监听器 获取Frame对象,与上节一样 调用Frame对象的addWindowListener()方法,参数:WindowListen ...

  5. 05-Servlet与内部加载机制(part1)

     一.什么是Servlet Servlet 运行在服务端的Java小程序, 是sun公司提供一套规范(接口)     主要功能: 用来处理客户端请求 响应给浏览器的动态资源 servlet的实质就是j ...

  6. src/main/resources文件夹

    Error starting ApplicationContext. To display the auto-configuration report re-run your application ...

  7. 几个css3动画库

    Hover.css 查看演示: http://ianlunn.github.io/Hover/ github地址: https://github.com/IanLunn/Hover Animate.c ...

  8. js 防止连续点击

    简称 js防连点 var flag = true; $(".yzm>span").click(function(){ if(!flag){       return fals ...

  9. HTML绝对路径和相对路径

    HTML路径: 绝对路径:从根目录开始 相对路径:../ 相对于html文件,上一级 ./ 相对于html文件,当前路径(可以省略) 文件夹名 相对于html文件,往文件里面走

  10. sql:SQL Server metadata queries

    http://www.mssqltips.com/sqlservertip/3449/making-sql-server-metadata-queries-easier-with-these-new- ...