大水题WA了两发T T

  记录一下a[i]的前缀和,a[i]*a[j]就是sigma(a[j]*sumi[j-1])

  记录一下a[i]*a[j]的前缀和,a[i]*a[j]*a[k]就是sigma(a[k]*sumij[k-1])

  因为要求ai<aj<ak,所以前缀和必须用权值树状数组来统计

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define MOD(x) ((x)>=mod?(x)-mod:(x))
using namespace std;
const int maxn=,mod=;
int n,N,ans;
int a[maxn],b[maxn],lisan[maxn],tree[][maxn];
char buf[],*ptr=buf-;
inline int read()
{
char c=*++ptr;int s=,t=;
while(c<||c>)c=*++ptr;
while(c>=&&c<=){s=s*+c-'';c=*++ptr;}
return s*t;
}
inline int lowbit(int x){return x&-x;}
inline void add(int x,int delta,int ty){for(;x<=N;x+=lowbit(x))tree[ty][x]=MOD(tree[ty][x]+delta);}
inline int query(int x,int ty){int sum=;for(;x;x-=lowbit(x))sum=MOD(sum+tree[ty][x]);return sum;}
int main()
{
fread(buf,,sizeof(buf),stdin);n=read();
for(int i=;i<=n;i++)a[i]=read(),a[i]%=mod,b[i]=a[i];N=n;
sort(b+,b++N);N=unique(b+,b++N)-b-;
for(int i=;i<=n;i++)lisan[i]=lower_bound(b+,b++N,a[i])-b;
for(int i=;i<=n;i++)
{
ans=(ans+1ll*a[i]*query(lisan[i]-,))%mod;
int x=1ll*a[i]*query(lisan[i]-,)%mod;
add(lisan[i],a[i],);add(lisan[i],x,);
}
printf("%d\n",ans);
}

bzoj5055: 膜法师(BIT)的更多相关文章

  1. bzoj5055 膜法师

    Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然,他能为长者所续的时间,为这三个维度上能量的乘 ...

  2. 【BZOJ5055】膜法师 树状数组

    [BZOJ5055]膜法师 Description 题目描述 在给定的维度序列a中, 求出所有满足i<j<k且ai<aj<ak的ai*aj*ak的和 即 ∑ (a_i*a_j* ...

  3. [BZOJ 5055]膜法师

    Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然,他能为长者所续的时间,为这三个维度上能量的乘 ...

  4. BZOJ_5055_膜法师_树状数组+离散化

    BZOJ_5055_膜法师_树状数组+离散化 Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然 ...

  5. bzoj 5055: 膜法师——树状数组

    Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然,他能为长者所续的时间,为这三个维度上能量的乘 ...

  6. bzoj 5055: 膜法师 -- 树状数组

    5055: 膜法师 Time Limit: 10 Sec  Memory Limit: 128 MB Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇 ...

  7. JZOJ.5280【NOIP2017模拟8.15】膜法师

    Description

  8. [JZOJ5280]膜法师题解--思维+前缀和

    [JZOJ5280]膜法师题解--思维+前缀和 题目链接 暴 力 过 于

  9. 【bzoj5055】膜法师(离散化+树状数组)

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=5055 这道题……不得不说,从标题到题面都能看出一股浓浓的膜法气息……苟…… 题意就是统计顺序 ...

随机推荐

  1. kallsyms , addr to symbol

    #!/usr/bin/env python # addr2sym.py - resolve addresses to symbols, using a map file # Reads a log f ...

  2. InTelliJ 字体调整

    Java IDE 工具InTelliJ 调整字体大小 1.File -> Settings 2.左上的搜索框中输入 font. 等待自动查找结果. 3.修改size 大小

  3. [SHELL]查看端口,文件,服务关系的四个命令netstat,lsof,fuser,nmap

    一,netstat (1)简介 netstat主要是用来打印系统网络的状态信息,当输入netstat后,输出如下: 可以看出,netstat的输出分为两个部分组成: 一个是Active Interne ...

  4. Quartz学习--三 Hello Jdbc Quartz! 和 demo 结尾

    四. Hello JDBC Quartz! JDBC方式: 就是说通过数据库的jdbc链接来进行quartz的一个配置 Quartz支持了很好的支持 demo用例 使用mysql作为例子进行演示 相比 ...

  5. 拉格朗日乘子法与KKT条件 && SVM中为什么要用对偶问题

    参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原 ...

  6. windows下对python的pip更新到最新版本

    1->打开windows的命令窗口. 2->进入到pip.exe所在的文件夹下,我安装的python在G:\python3.6文件夹下,pip.exe则在G:\python3.6\Scri ...

  7. tendermint 跟tikv结合

    import ( "fmt" "github.com/allegro/bigcache" "github.com/kooksee/usmint/cmn ...

  8. Centos 7 zabbix 实战应用

    实际需求:公司已经有了100台服务器,现在需要使用zabbix全部监控起来. 先出个方案(规划) 常规监控:cpu,内存,磁盘,网卡 问题:怎样快速添加100台机器         方法1:使用克隆的 ...

  9. PHP开发中常见的漏洞及防范

    PHP开发中常见的漏洞及防范 对于PHP的漏洞,目前常见的漏洞有五种.分别是Session文件漏洞.SQL注入漏洞.脚本命令执行漏洞.全局变量漏洞和文件漏洞.这里分别对这些漏洞进行简要的介绍和防范. ...

  10. TP框架代码学习 学习记录 3.2.3

    文件:think.class.php PHP提供register_shutdown_function()这个函数,能够在脚本终止前回调注册的函数,也就是当 PHP 程序执行完成后执行的函数.regis ...