【POJ2891】Strange Way to Express Integers(拓展CRT)

题面

Vjudge

板子题。

题解

拓展\(CRT\)模板题。

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 111111
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=1,y=0;return a;}
ll d=exgcd(b,a%b,y,x);
y-=a/b*x;return d;
}
int n;
ll m[MAX],a[MAX];
int main()
{
while(scanf("%d",&n)!=EOF)
{
bool fl=true;ll x,y;
for(int i=1;i<=n;++i)scanf("%lld%lld",&m[i],&a[i]);
for(int i=2;i<=n;++i)
{
ll d=exgcd(m[1],m[i],x,y),g=a[i]-a[1],t;
if(g%d){fl=false;break;}
x*=g/d;t=m[i]/d;x=(x%t+t)%t;
a[1]+=x*m[1];m[1]*=t;a[1]%=m[1];
}
if(!fl)puts("-1");
else printf("%lld\n",(a[1]%m[1]+m[1])%m[1]);
}
return 0;
}

【POJ2891】Strange Way to Express Integers(拓展CRT)的更多相关文章

  1. 中国剩余定理+扩展中国剩余定理 讲解+例题(HDU1370 Biorhythms + POJ2891 Strange Way to Express Integers)

    0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中 ...

  2. POJ2891——Strange Way to Express Integers(模线性方程组)

    Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which intro ...

  3. POJ2891 Strange Way to Express Integers

    题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...

  4. POJ-2891 Strange Way to Express Integers(拓展中国剩余定理)

    放一个写的不错的博客:https://www.cnblogs.com/zwfymqz/p/8425731.html POJ好像不能用__int128. #include <iostream> ...

  5. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  6. POJ2891 Strange Way to Express Integers 扩展欧几里德 中国剩余定理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2891 题意概括 给出k个同余方程组:x mod ai = ri.求x的最小正值.如果不存在这样的x, ...

  7. POJ2891 - Strange Way to Express Integers(模线性方程组)

    题目大意 求最小整数x,满足x≡a[i](mod m[i])(没有保证所有m[i]两两互质) 题解 中国剩余定理显然不行....只能用方程组两两合并的方法求出最终的解,刘汝佳黑书P230有讲~~具体证 ...

  8. POJ2891 Strange Way to Express Integers [中国剩余定理]

    不互质情况的模板题 注意多组数据不要一发现不合法就退出 #include <iostream> #include <cstdio> #include <cstring&g ...

  9. POJ.2891.Strange Way to Express Integers(扩展CRT)

    题目链接 扩展中国剩余定理:1(直观的).2(详细证明). [Upd:]https://www.luogu.org/problemnew/solution/P4774 #include <cst ...

  10. POJ2891 Strange Way to Express Integers【扩展中国剩余定理】

    题目大意 就是模板...没啥好说的 思路 因为模数不互质,所以直接中国剩余定理肯定是不对的 然后就考虑怎么合并两个同余方程 \(ans = a_1 + x_1 * m_1 = a_2 + x_2 * ...

随机推荐

  1. vscode eslint格式化配置

    { // vscode默认启用了根据文件类型自动设置tabsize的选项 "editor.detectIndentation": false, // 重新设定tabsize &qu ...

  2. Windows隐藏账户

    win7系统用户由于共享文件,会开启Guest来宾帐户,开启Guest来宾帐户后发现登录界面会显示guest帐户,但是只有在有密码的情况下才会显示,很多用户不喜欢显示guest帐户,那么Win7登录界 ...

  3. maven 手动安装jar包

    1.问题 maven有时候在pom文件引入jar包会报错,所以可以通过手动导入jar包的方式导入. 2.解决: 通过maven命令导入jar包, mvn install:install-file -D ...

  4. iOS开发之多线程技术—GCD篇

    本篇将从四个方面对iOS开发中GCD的使用进行详尽的讲解: 一.什么是GCD 二.我们为什么要用GCD技术 三.在实际开发中如何使用GCD更好的实现我们的需求 一.Synchronous & ...

  5. spring mvc ajaxfileupload文件上传返回json下载问题

    问题:使用spring mvc ajaxfileupload 文件上传在ie8下会提示json下载问题 解决方案如下: 服务器代码: @RequestMapping(value = "/ad ...

  6. Arctic Network POJ 2349 (最小生成树思想)

    Description The Department of National Defence (DND) wishes to connect several northern outposts by ...

  7. Live Love(思维)

    DreamGrid is playing the music game Live Love. He has just finished a song consisting of n notes and ...

  8. Java:类集框架中集合的学习

    Java:类集框架中集合的学习 集合 Java:Set的学习 Set是类集框架中的集合类.集合是不按特定的方式排序,并且没有重复对象的一种类. Q:Set如何操作?Set中的不按特定方式排序是怎么排序 ...

  9. winform界面之固定大小随dpi

    场景: 已经更改成大小可随dpi改变,可是在用applyresoures()之后(添加更改语言功能),发现控件大小失真. 分析:applyresoures()是把该控件的属性改为程序设计的固定大小,不 ...

  10. python apply()函数

    python apply函数的具体的含义: apply(func [, args [, kwargs ]]) 函数用于当函数参数已经存在于一个元组或字典中时,间接地调用函数.args是一个包含将要提供 ...