[POJ3613] Cow Relays
题目大意
给你一个含有边权的无向图,问从$S$到$T$经过$N$条边的最小花费。
试题分析
我们可以很容易推导$dp$方程,$dp(k,i,j)$表示经过$k$条边从$i$到$j$的最小花费。则,$dp(k,i,j)=min(dp(k-1,i,p)+dp(1,p,j))$。
而$(i,p),(p,j),(i,j)$发现了什么,这不是矩阵吗,$dp(1,i,j)$为初始矩阵($1$次幂),$dp(2,i,j)$为$2$次幂,$dp(3,i,j)$为$3$次幂,所以只需要矩阵快速幂一下即可。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define int long long
using namespace std;
inline int read(){
int f=,ans=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
const int MAXN=;
struct matrix{
int st[MAXN][MAXN];
}a,F,ans;
struct node{
int u,v,w;
}x[MAXN];
int Map[],n,k,m,S,T,cnt;
matrix mul(matrix s1,matrix s2){
matrix s3;
memset(s3.st,/,sizeof(s3.st));
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int p=;p<=n;p++){
s3.st[i][p]=min(s3.st[i][p],s1.st[i][j]+s2.st[j][p]);
}
return s3;
}
matrix qpow(int b){
if(b==) return a;
ans=a;
while(b){
if(b&) ans=mul(ans,a);
a=mul(a,a);b>>=;
}return ans;
}
signed main(){
k=read(),m=read(),S=read(),T=read();
memset(a.st,/,sizeof(a.st));
for(int i=;i<=m;i++){
int w=read(),u=read(),v=read();
if(Map[u]==) Map[u]=++cnt;
if(Map[v]==) Map[v]=++cnt;
u=Map[u],v=Map[v];
x[i].w=w,x[i].u=u,x[i].v=v;
a.st[u][v]=a.st[v][u]=min(a.st[u][v],w);
}
n=cnt;
F=qpow(k-);
printf("%lld",F.st[Map[S]][Map[T]]);
}
/*
2 3 1 3
1 1 2
1 2 3
1 1 3
*/
[POJ3613] Cow Relays的更多相关文章
- POJ3613 Cow Relays [矩阵乘法 floyd类似]
Cow Relays Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7335 Accepted: 2878 Descri ...
- poj3613 Cow Relays【好题】【最短路】【快速幂】
Cow Relays Time Limit: 1000MS Memory Limit: 65536K Total Submissions:9207 Accepted: 3604 Descrip ...
- 疯子的算法总结(九) 图论中的矩阵应用 Part 1+POJ3613 Cow Relays
图的存储有邻接矩阵,那么他就具备一些矩阵的性质,设有一个图的demo[100][100];那么demo[M][N]就是M—>N的距离,若经过一次松弛操作demo[M][N]=demo[M][K] ...
- POJ3613 Cow Relays(矩阵快速幂)
题目大概要求从起点到终点恰好经过k条边的最短路. 离散数学告诉我们邻接矩阵的k次幂就能得出恰好经过k条路的信息,比如POJ2778. 这题也一样,矩阵的幂运算定义成min,而min满足结合律,所以可以 ...
- 【POJ3613 Cow Relays】(广义矩阵乘法)
题目链接 先离散化,假设有\(P\)个点 定义矩阵\(A_{ij}\)表示\(i\)到\(j\)只经过一条边的最短路,\[{(A^{a+b})_{ij}=\min_{1\le k\le p} \{ ( ...
- [POJ3613] Cow Relays(Floyd+矩阵快速幂)
解题报告 感觉这道题gyz大佬以前好像讲过一道差不多的?然鹅我这个蒟蒻发现矩阵快速幂已经全被我还给老师了...又恶补了一遍,真是恶臭啊. 题意 给定一个T(2 <= T <= 100)条边 ...
- 「POJ3613」Cow Relays
「POJ3613」Cow Relays 传送门 就一个思想:\(N\) 遍 \(\text{Floyd}\) 求出经过 \(N\) 个点的最短路 看一眼数据范围,想到离散化+矩阵快速幂 代码: #in ...
- poj3613:Cow Relays(倍增优化+矩阵乘法floyd+快速幂)
Cow Relays Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7825 Accepted: 3068 Descri ...
- poj 3613 Cow Relays
Cow Relays Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5411 Accepted: 2153 Descri ...
随机推荐
- mfs分布式系统从理论简介到实战部署
文章前面想说的话:这篇博客写出来真是有点累到了,本来昨天就基本就写好了,放在草稿里面,今天打开就没有了!!唉,就尼玛离我而去了,只有重写,然后中间虚拟机还“爆炸”重启又搞了一会,不容易呀!!希望各位博 ...
- katalon系列十一:Katalon Studio在Jenkins持续集成
以下在WIN10上运行正常.安装准备:一.安装Katalon Studio二.安装Jenkins三.获取Katalon命令行运行命令:点击工具栏的‘Build CMD’按钮,选择测试集以及其他选项:选 ...
- java计算两个日期之间的天数,排除节假日和周末
如题所说,计算两个日期之前的天数,排除节假日和周末.这里天数的类型为double,因为该功能实现的是请假天数的计算,有请一上午假的为0.5天. 不够很坑的是每个日期都要查询数据库,感觉很浪费时间. 原 ...
- 4星|《亿万》:FBI大战华尔街对冲基金大鳄
亿万:围剿华尔街大白鲨 全书尝试还原2008-2013年前后FBI指控赛克资本老板科恩通过内幕交易盈利的案件细节. 作者花了数年时间,采访了200多位当事人,阅读了海量的相关资料.书中交代了科恩的发家 ...
- Laxcus大数据操作系统2.0(5)- 第二章 数据组织
第二章 数据组织 在数据的组织结构设计上,Laxcus严格遵循数据和数据描述分离的原则,这个理念与关系数据库完全一致.在此基础上,为了保证大规模数据存取和计算的需要,我们设计了大量新的数据处理技术.同 ...
- Java接口interface,匿名内部类
接口 1.接口内部为 常量+公用的抽象方法.类必须实现接口中的所有方法 2.接口的语法格式:不写abstract会自动添加,可以继承多个接口 修饰符不能使private,protected [修饰符] ...
- 关于jsp之间href传参(中文)乱码问题
在A.jsp中有href传值 <a href=\"6.jsp?param="+rs.getString(2)+"\">" 在B.jsp中使 ...
- mysql 设置远程登录
1.本机登录进mysql,并切换到本机mysql数据库下 2. GRANT ALL PRIVILEGES ON *.* TO 'tigase'@'%' IDENTIFIED BY '123456' W ...
- XML XPath语法总结
刚刚遇到一个多重查询xmlDoc.SelectSingleNode("Root/Element[@Name='大气象'][@Age='30']")根据innerText查询xmlD ...
- 敏捷冲刺DAY6
一. 每日会议 1. 照片 2. 昨日完成工作 3. 今日完成工作 4. 工作中遇到的困难 对于可视控件,是能进行设计的,但是对于不可视组件,比如AdoConnection怎么才能设计.但是我看del ...