link

题目大意

给你一个含有边权的无向图,问从$S$到$T$经过$N$条边的最小花费。

试题分析

我们可以很容易推导$dp$方程,$dp(k,i,j)$表示经过$k$条边从$i$到$j$的最小花费。则,$dp(k,i,j)=min(dp(k-1,i,p)+dp(1,p,j))$。

而$(i,p),(p,j),(i,j)$发现了什么,这不是矩阵吗,$dp(1,i,j)$为初始矩阵($1$次幂),$dp(2,i,j)$为$2$次幂,$dp(3,i,j)$为$3$次幂,所以只需要矩阵快速幂一下即可。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define int long long
using namespace std;
inline int read(){
int f=,ans=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
const int MAXN=;
struct matrix{
int st[MAXN][MAXN];
}a,F,ans;
struct node{
int u,v,w;
}x[MAXN];
int Map[],n,k,m,S,T,cnt;
matrix mul(matrix s1,matrix s2){
matrix s3;
memset(s3.st,/,sizeof(s3.st));
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int p=;p<=n;p++){
s3.st[i][p]=min(s3.st[i][p],s1.st[i][j]+s2.st[j][p]);
}
return s3;
}
matrix qpow(int b){
if(b==) return a;
ans=a;
while(b){
if(b&) ans=mul(ans,a);
a=mul(a,a);b>>=;
}return ans;
}
signed main(){
k=read(),m=read(),S=read(),T=read();
memset(a.st,/,sizeof(a.st));
for(int i=;i<=m;i++){
int w=read(),u=read(),v=read();
if(Map[u]==) Map[u]=++cnt;
if(Map[v]==) Map[v]=++cnt;
u=Map[u],v=Map[v];
x[i].w=w,x[i].u=u,x[i].v=v;
a.st[u][v]=a.st[v][u]=min(a.st[u][v],w);
}
n=cnt;
F=qpow(k-);
printf("%lld",F.st[Map[S]][Map[T]]);
}
/*
2 3 1 3
1 1 2
1 2 3
1 1 3
*/

[POJ3613] Cow Relays的更多相关文章

  1. POJ3613 Cow Relays [矩阵乘法 floyd类似]

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7335   Accepted: 2878 Descri ...

  2. poj3613 Cow Relays【好题】【最短路】【快速幂】

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:9207   Accepted: 3604 Descrip ...

  3. 疯子的算法总结(九) 图论中的矩阵应用 Part 1+POJ3613 Cow Relays

    图的存储有邻接矩阵,那么他就具备一些矩阵的性质,设有一个图的demo[100][100];那么demo[M][N]就是M—>N的距离,若经过一次松弛操作demo[M][N]=demo[M][K] ...

  4. POJ3613 Cow Relays(矩阵快速幂)

    题目大概要求从起点到终点恰好经过k条边的最短路. 离散数学告诉我们邻接矩阵的k次幂就能得出恰好经过k条路的信息,比如POJ2778. 这题也一样,矩阵的幂运算定义成min,而min满足结合律,所以可以 ...

  5. 【POJ3613 Cow Relays】(广义矩阵乘法)

    题目链接 先离散化,假设有\(P\)个点 定义矩阵\(A_{ij}\)表示\(i\)到\(j\)只经过一条边的最短路,\[{(A^{a+b})_{ij}=\min_{1\le k\le p} \{ ( ...

  6. [POJ3613] Cow Relays(Floyd+矩阵快速幂)

    解题报告 感觉这道题gyz大佬以前好像讲过一道差不多的?然鹅我这个蒟蒻发现矩阵快速幂已经全被我还给老师了...又恶补了一遍,真是恶臭啊. 题意 给定一个T(2 <= T <= 100)条边 ...

  7. 「POJ3613」Cow Relays

    「POJ3613」Cow Relays 传送门 就一个思想:\(N\) 遍 \(\text{Floyd}\) 求出经过 \(N\) 个点的最短路 看一眼数据范围,想到离散化+矩阵快速幂 代码: #in ...

  8. poj3613:Cow Relays(倍增优化+矩阵乘法floyd+快速幂)

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7825   Accepted: 3068 Descri ...

  9. poj 3613 Cow Relays

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5411   Accepted: 2153 Descri ...

随机推荐

  1. css布局笔记(一)

    布局方式 一列布局 通常固定宽高,用margin:0 auto:居中显示 两列布局 说起两列布局,最常见的就是使用float来实现.float浮动布局的缺点是浮动后会造成文本环绕等效果,以及需要及时清 ...

  2. Spring 定时任务Scheduled 开发详细图文

    Spring 定时任务Scheduled 开发 文章目录 一.前言 1.1 定时任务 1.2 开发环境 1.3 技术实现 二.创建包含WEB.xml 的Maven 项目 2.1 创建多模块项目task ...

  3. HP VC模块Server Profile配置快速参考(With SUS)

    以管理员身份登录VCM 准备进行Server Profiles的配置 在左侧导航栏中找到并点击"Server Profiles",在右侧主窗口的左下角点击"Add&quo ...

  4. spring JDBC 事务管理

    spring JDBC 事务管理 一.Spring 中的JDBC Spring中封装了JDBC的ORM框架,可以用它来操作数据,不需要再使用外部的OEM框架(MyBatis),一些小的项目用它. 步骤 ...

  5. VLP16线用户手册.md

    VLP16线用户手册 文档  传感器数据 分组类型和定义 传感器产生两种类型的数据包:数据包和位置数据包.位置包有时也被称为遥测包或GPS包. 数据包包括传感器测量到的三维数据以及返回光脉冲的表面的校 ...

  6. ES6的新特性(14)——Iterator 和 for...of 循环

    Iterator 和 for...of 循环 Iterator(遍历器)的概念 JavaScript 原有的表示“集合”的数据结构,主要是数组(Array)和对象(Object),ES6 又添加了Ma ...

  7. Linux下使用vim编辑C程序

    这几天在系统能力班自学linux,加上最近大数据课上开始使用linux,我在这里总结一下,linux下使用vim编辑c程序的一些问题. 大数据课上是直接使用micro来编辑的,我这里只是简单的说明一下 ...

  8. Scrum立会报告+燃尽图(Beta阶段第二周第三次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2411 项目地址:https://coding.net/u/wuyy694 ...

  9. “Hello World!”团队第五周第三次会议

    今天是我们团队“Hello World!”团队第五周召开的第三次会议. 双十一大家过的怎么样?由于组内其他成员被“剁手”,今日会议记录由我来写. 博客内容: 一.会议时间 二.会议地点 三.会议成员 ...

  10. 求1到N(正整数)之间1出现的个数

    一.题目要求 给定一个十进制的正整数,写下从1开始,到N的所有整数,然后数一下其中出现“1”的个数. 要求: 写一个函数 f(N) ,返回1 到 N 之间出现的“1”的个数.例如 f(12)  = 5 ...