BZOJ 1070 修车 【费用流】
Description
同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同
的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最
小。 说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
Input
第一行有两个m,n,表示技术人员数与顾客数。 接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人
员维修第i辆车需要用的时间T。
Output
最小平均等待时间,答案精确到小数点后2位。
Sample Input
3 2
1 4
Sample Output
HINT
数据范围: (2<=M<=9,1<=N<=60), (1<=T<=1000)
题解
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 1005,maxm = 1000005,INF = 0x3f3f3f3f; inline LL read(){
LL out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
} LL m,n; int head[maxn],nedge = 0;
struct EDGE{
LL from,to,f,w,next;
}edge[maxm]; inline void build(int u,int v,LL f,LL w){
edge[nedge] = (EDGE) {u,v,f,w,head[u]};
head[u] = nedge++;
edge[nedge] = (EDGE) {v,u,0,-w,head[v]};
head[v] = nedge++;
} LL pre[maxn],d[maxn],S,T;
bool inq[maxn];
LL cost = 0; inline void maxflow(){
cost = 0;
while (true){
fill(d,d + maxn,INF);
d[S] = 0; pre[S] = 0;
queue<int> q;
q.push(S);
int u,to;
while (!q.empty()){
u = q.front();
q.pop();
inq[u] = false;
Redge(u) {
if (edge[k].f && d[to = edge[k].to] > d[u] + edge[k].w){
d[to] = d[u] + edge[k].w;
pre[to] = k;
if (!inq[to]){
q.push(to);
inq[to] = true;
}
}
}
}
if (d[T] == INF) break;
LL flow = INF; u = T;
while (u != S) {flow = min(flow,edge[pre[u]].f); u = edge[pre[u]].from;}
cost += flow * d[T];
u = T;
while (u != S){
edge[pre[u]].f -= flow;
edge[pre[u] ^ 1].f += flow;
u = edge[pre[u]].from;
}
}
} int main()
{
fill(head,head + maxn,-1);n = read();
m = read(); S = 0;
T = 1001;
LL t;
for (int i = 1; i <= m; i++){
build(i,T,1,0);
for (int j = 1; j <= n; j++){
t = read();
for (int k = 1; k <= m; k++)
build(j * m + k,i,1,k * t);
}
}
for (int i = 1; i <= n; i++)
for (int k = 1; k <= m; k++)
build(S,i * m + k,1,0);
maxflow();
printf("%.2lf\n",(double) cost / m);
return 0;
}
BZOJ 1070 修车 【费用流】的更多相关文章
- bzoj 1070 修车 —— 费用流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1070 需要考虑前面修的车对后面等待的车造成的时间增加: 其实可以从每个人修车的顺序考虑,如果 ...
- BZOJ 1070 修车(费用流)
如果能想到费用流,这道题就是显然了. 要求所有人的等待平均时间最小,也就是所有人的总等待时间最小. 每辆车只需要修一次,所以s连每辆车容量为1,费用为0的边. 现在需要把每个人拆成n个点,把车和每个人 ...
- bzoj 1070: [SCOI2007]修车 费用流
1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2785 Solved: 1110[Submit][Status] ...
- 【BZOJ 1070】[SCOI2007]修车 费用流
就是拆个点限制一下(两点一排一大片),这道题让我注意到了限制这个重要的词.我们跑网络流跑出来的图都是有一定意义的,一般这个意义就对应了问题的一种方案,一般情况下跑一个不知道对不对的方案是相对容易的我们 ...
- BZOJ 1070 修车(最小费用流)
链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1070 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术 ...
- BZOJ 1070 修车
Description 同一时刻有\(N\)位车主带着他们的爱车来到了汽车维修中心.维修中心共有\(M\)位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这\(M\)位技术 ...
- P2053 [SCOI2007]修车 费用流
$ \color{#0066ff}{ 题目描述 }$ 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M ...
- [SCOI2007][bzoj1070] 修车 [费用流]
题面 传送门 思路 我们考虑某个工人修车的从前到后序列如下: ${W_1,W_2,W_3,...,W_n}$ 那么,对于这n辆车的车主而言,他们等候的总时间为: $\sum_{i=1}^{n}W_i\ ...
- [bzoj1070][SCOI2007]修车——费用流
题目大意: 传送门 题解: 本题和(POJ3686)[http://poj.org/problem?id=3686]一题一模一样,而且还是数据缩小以后的弱化版QAQ,<挑战程序设计竞赛>一 ...
随机推荐
- 前端--javaScript之BOM和DOM
BOM和DOM概述 BOM(Browser Object Model):是指浏览器对象模型,它使js有能力和浏览器进行"对话". DOM(Document Object Model ...
- linux信号处理相关知识
因为要处理最近项目中碰上的多个子进程退出信号同时到达,导致程序不当产生core的情况,今天我花了时间看了一些关于linux信号处理的博客. 总结一下:(知识未经实践) linux信号分两种,一种实 ...
- Jmeter使用HTTP代理服务器录制脚本
使用Jmeter录制脚本通常使用Badboy工具录制或者Jmeter自带的HTTP代理服务器录制脚本,这里说一下使用HTTP代理服务器录制时遇到的问题. 1. Jmeter安装 下载得到Jmeter ...
- 【CentOS】安装Docker教程
前提条件 Docker 运行在 CentOS 7 上,要求系统为64位.系统内核版本为 3.10 以上. Docker 运行在 CentOS-6.5 或更高的版本的 CentOS 上,要求系统为64位 ...
- 3星|《科技投资新时代》:TMT行业资讯汇编
科技投资新时代:TMT投资方法.趋势与热点聚焦 全书共6章,前4章是一些投资与分析的基本方法与技巧,第5章集中讲通信行业的现状与趋势,第6章讲大数据.物联网.全面屏等TMT行业热点. 总体来说数据.信 ...
- DNS递归查询与迭代查询
注:一般TCP/IP的应用层或者OSI的会话.表示.应用层把数据称为数据或者信息,到了传输层把数据称为报文,到了最底层就是比特流了也就是字节流 DNS递归查询与迭代查询 基础知识 1.域名系统 2 ...
- Tensorflow框架之AlexNet
from datetime import datetime import math import time import tensorflow as tf batch_size=32 num_batc ...
- ICPC 沈阳 Problem C
题意 求n的全排列中将前k个数排序后最长公共子序列>=n-1的个数 思考 我们先把最后可能产生的结果找出来,再找有多少种排列能构成这些结果 设排列为s S like 1,2,3,...,n , ...
- Hyperledger Fabric中的Identity
Hyperledger Fabric中的Identity 什么是Identity 区块链网络中存在如下的角色:peers, orderers, client application, administ ...
- eBay:美国各州最受欢迎的产品品类
雨果网从美国媒体<商业内幕>8月26日的报道中获悉,电商巨头eBay近日发布了美国各州最受欢迎的产品品类.包括:加州人青睐女性高端配件,而新泽西 州的男人喜欢古龙香水.相比这些华丽配饰而言 ...