BZOJ 1070 修车 【费用流】
Description
同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同
的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最
小。 说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
Input
第一行有两个m,n,表示技术人员数与顾客数。 接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人
员维修第i辆车需要用的时间T。
Output
最小平均等待时间,答案精确到小数点后2位。
Sample Input
3 2
1 4
Sample Output
HINT
数据范围: (2<=M<=9,1<=N<=60), (1<=T<=1000)
题解
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 1005,maxm = 1000005,INF = 0x3f3f3f3f; inline LL read(){
LL out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
} LL m,n; int head[maxn],nedge = 0;
struct EDGE{
LL from,to,f,w,next;
}edge[maxm]; inline void build(int u,int v,LL f,LL w){
edge[nedge] = (EDGE) {u,v,f,w,head[u]};
head[u] = nedge++;
edge[nedge] = (EDGE) {v,u,0,-w,head[v]};
head[v] = nedge++;
} LL pre[maxn],d[maxn],S,T;
bool inq[maxn];
LL cost = 0; inline void maxflow(){
cost = 0;
while (true){
fill(d,d + maxn,INF);
d[S] = 0; pre[S] = 0;
queue<int> q;
q.push(S);
int u,to;
while (!q.empty()){
u = q.front();
q.pop();
inq[u] = false;
Redge(u) {
if (edge[k].f && d[to = edge[k].to] > d[u] + edge[k].w){
d[to] = d[u] + edge[k].w;
pre[to] = k;
if (!inq[to]){
q.push(to);
inq[to] = true;
}
}
}
}
if (d[T] == INF) break;
LL flow = INF; u = T;
while (u != S) {flow = min(flow,edge[pre[u]].f); u = edge[pre[u]].from;}
cost += flow * d[T];
u = T;
while (u != S){
edge[pre[u]].f -= flow;
edge[pre[u] ^ 1].f += flow;
u = edge[pre[u]].from;
}
}
} int main()
{
fill(head,head + maxn,-1);n = read();
m = read(); S = 0;
T = 1001;
LL t;
for (int i = 1; i <= m; i++){
build(i,T,1,0);
for (int j = 1; j <= n; j++){
t = read();
for (int k = 1; k <= m; k++)
build(j * m + k,i,1,k * t);
}
}
for (int i = 1; i <= n; i++)
for (int k = 1; k <= m; k++)
build(S,i * m + k,1,0);
maxflow();
printf("%.2lf\n",(double) cost / m);
return 0;
}
BZOJ 1070 修车 【费用流】的更多相关文章
- bzoj 1070 修车 —— 费用流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1070 需要考虑前面修的车对后面等待的车造成的时间增加: 其实可以从每个人修车的顺序考虑,如果 ...
- BZOJ 1070 修车(费用流)
如果能想到费用流,这道题就是显然了. 要求所有人的等待平均时间最小,也就是所有人的总等待时间最小. 每辆车只需要修一次,所以s连每辆车容量为1,费用为0的边. 现在需要把每个人拆成n个点,把车和每个人 ...
- bzoj 1070: [SCOI2007]修车 费用流
1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2785 Solved: 1110[Submit][Status] ...
- 【BZOJ 1070】[SCOI2007]修车 费用流
就是拆个点限制一下(两点一排一大片),这道题让我注意到了限制这个重要的词.我们跑网络流跑出来的图都是有一定意义的,一般这个意义就对应了问题的一种方案,一般情况下跑一个不知道对不对的方案是相对容易的我们 ...
- BZOJ 1070 修车(最小费用流)
链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1070 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术 ...
- BZOJ 1070 修车
Description 同一时刻有\(N\)位车主带着他们的爱车来到了汽车维修中心.维修中心共有\(M\)位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这\(M\)位技术 ...
- P2053 [SCOI2007]修车 费用流
$ \color{#0066ff}{ 题目描述 }$ 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M ...
- [SCOI2007][bzoj1070] 修车 [费用流]
题面 传送门 思路 我们考虑某个工人修车的从前到后序列如下: ${W_1,W_2,W_3,...,W_n}$ 那么,对于这n辆车的车主而言,他们等候的总时间为: $\sum_{i=1}^{n}W_i\ ...
- [bzoj1070][SCOI2007]修车——费用流
题目大意: 传送门 题解: 本题和(POJ3686)[http://poj.org/problem?id=3686]一题一模一样,而且还是数据缩小以后的弱化版QAQ,<挑战程序设计竞赛>一 ...
随机推荐
- C# 多线程的等待所有线程结束的一个问题
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...
- python全栈开发-前方高能-生成器和生成器表达式
python_day_13 今日主要内容1. 生成器和生成器函数生成器的本质就是迭代器生成器的三种创建办法: 1.通过生成器函数 2.通过生成器表达式创建生成器 3.通过数据转换 生成器函数: 函数中 ...
- 简述AQS原理
这是一道面试题:简述AQS原理 AQS核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态.如果被请求的共享资源被占用,那么就需要一套线程阻塞 ...
- NUMA 体系架构
NUMA 体系架构 SMP 体系架构 NUMA 体系架构 NUMA 结构基本概念 Openstack flavor NUMA 策略 Nova 实现 NUMA 流程 1. SMP 体系架构 CPU 计算 ...
- Python坑系列:可变对象与不可变对象
在之前的文章 http://www.cnblogs.com/bitpeng/p/4748148.html 中,大家看到了ret.append(path) 和ret.append(path[:])的巨大 ...
- ES6的新特性(4)——字符串的扩展
字符串的扩展 ES6 加强了对 Unicode 的支持,并且扩展了字符串对象. 字符的 Unicode 表示法 JavaScript 允许采用\uxxxx形式表示一个字在\u0000~\uFFFF之间 ...
- ASP.NET MVC5 学习系列之视图
一.视图约定 当创建一个项目模版时,可以注意到,项目以一种非常具体的方式包含了一个结构化的Views目录.在每一个控制器的View文件夹中,每一个操作方法都有一个同名的视图文件与其对应.(约定大于配置 ...
- python __call__ 函数
__call__ Python中有一个有趣的语法,只要定义类型的时候,实现__call__函数,这个类型就成为可调用的. 换句话说,我们可以把这个类型的对象当作函数来使用,相当于 重载了括号运算符. ...
- HDU 4747 Mex 递推/线段树
题目链接: acm.hdu.edu.cn/showproblem.php?pid=4747 Mex Time Limit: 15000/5000 MS (Java/Others)Memory Limi ...
- Spring学习(四)—— java动态代理(JDK和cglib)
JAVA的动态代理 代理模式 代理模式是常用的java设计模式,他 的特征是代理类与委托类有同样的接口,代理类主要负责为委托类预处理消息.过滤消息.把消息转发给委托类,以及事后处理消息等.代理类与委托 ...