序列计数(count)
Portal -->broken qwq
Description
给你一个长度为\(n\)的序列,序列中的每个数都是不超过\(m\)的正整数,求满足以下两个条件的序列数量:
1.序列中至少有一个质数
2.序列中\(n\)个数之和为\(p\)的倍数
数据范围:\(1<=n<=10^9,1<=m<=2*10^7,1<=p<=100\)
Solution
我的妈呀真实智力康复。。为什么连最基础的矩乘优化都忘了==
记\(f[i][j]\)表示前\(i\)个数和模\(p\)为\(j\)的答案,然后转移我们矩乘一下就好了
至于必须满足其中一个数是质数,我们考虑容斥,先算出所有的,然后再把所有的素数去掉再算一遍转移矩阵,然后再算一次答案两个相减就好了
然而如果像我一开始一样弱智写了个\(n^3\)矩乘只能拿\(50\)
这题实际上可以直接\(f[i+1][(j+k)\%p]=f[i][j]*f[i][k]\)就完事了,所以只要\(n^2\)就好了,真实智力康复qwq
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int M=2*(1e7)+10,MOD=20170408;
int add(int x,int y){return (1LL*x+y)%MOD;}
int mul(int x,int y){return 1LL*x*y%MOD;}
int n,m,p,Ans1,Ans2,cnt;
struct Mtrix{/*{{{*/
int a[110];
int n;
void init(int _n){n=_n;memset(a,0,sizeof(a));}
void setUnit(int _n){init(_n);a[0]=1;}
friend Mtrix operator * (Mtrix &x,Mtrix &y){
int tmp;
Mtrix ret;
ret.init(x.n);
for (int i=0;i<ret.n;++i)
for(int j=0;j<ret.n;++j){
tmp=(i+j)%p;
ret.a[tmp]=add(ret.a[tmp],mul(x.a[i],y.a[j]));
}
return ret;
}
}ori,ret,base,ans1,ans2,tmp;/*}}}*/
bool vis[M];
int P[1500000];
int get_pos(int x,int y){return (x-y+p)%p;}
void fill(int op){
int tmp;
ori.init(p);
for (int i=1;i<=m;++i){
if (op==1&&!vis[i]) continue;
ori.a[i%p]=add(ori.a[i%p],1);
}
}
void ksm(int y){
ret.setUnit(p); base=ori;
for (;y;y>>=1,base=base*base)
if (y&1) ret=ret*base;
}
void prework(int n){
cnt=0;
vis[1]=1;
for (int i=2;i<=n;++i){
if (!vis[i])
P[++cnt]=i;
for (int j=1;j<=cnt&&P[j]*i<=n;++j){
vis[i*P[j]]=true;
if (i%P[j]==0)
break;
}
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d%d%d",&n,&m,&p);
prework(m);
fill(0);
ksm(n);
Ans1=ret.a[0];
fill(1);
ksm(n);
Ans2=ret.a[0];
printf("%d\n",(Ans1-Ans2+MOD)%MOD);
}
序列计数(count)的更多相关文章
- [Sdoi2017]序列计数 [矩阵快速幂]
[Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...
- [BZOJ4818][SDOI2017]序列计数(动规+快速幂)
4818: [Sdoi2017]序列计数 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 972 Solved: 581[Submit][Status ...
- BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法
BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ...
- HDU 6348 序列计数 (树状数组 + DP)
序列计数 Time Limit: 4500/4000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Subm ...
- luogu3702-[SDOI2017]序列计数
Description Alice想要得到一个长度为nn的序列,序列中的数都是不超过mm的正整数,而且这nn个数的和是pp的倍数. Alice还希望,这nn个数中,至少有一个数是质数. Alice想知 ...
- BZOJ4818 序列计数
4818: [Sdoi2017]序列计数 Time Limit: 30 Sec Memory Limit: 128 MB Description Alice想要得到一个长度为n的序列,序列中的数都是 ...
- 【BZOJ 4818】 4818: [Sdoi2017]序列计数 (矩阵乘法、容斥计数)
4818: [Sdoi2017]序列计数 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 560 Solved: 359 Description Al ...
- P3702 [SDOI2017]序列计数
P3702 [SDOI2017]序列计数 链接 分析: 首先可以容斥掉,用总的减去一个质数也没有的. 然后可以dp了,f[i][j]表示到第i个数,和在模p下是j的方案数,矩阵快速幂即可. 另一种方法 ...
- 【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法
[BZOJ4818][Sdoi2017]序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数 ...
随机推荐
- cinder的组件
跟nova相似,cinder也有很多组件,每个组件负责各自的业务,然后共同协作完成volume的管理.组件之间的通信方式与nova个组件之间的通信方式相同,都是通过消息队列进行通信. cinder-a ...
- [C++] Solve "Cannot run program "gdb": Unknown reason" error
In Mac OSX, The Issue Image: 1. Build the project on Eclipse successfully. 2. Run gdb on command lin ...
- PSP Daily软件Alpha版本——基于spec评论
题目要求:每个小组评论其他小组Alpha发布作品的软件功能说明书.要求和提交在[https://edu.cnblogs.com/campus/nenu/SWE2017FALL/homework/122 ...
- python 为什么没有自增自减符
>>> b = 5 >>> a = 5 >>> id(a) 162334512 >>> id(b) 162334512 > ...
- Python:字典操作总结
字典是Python中唯一的映射类型 [注]:字典中数据是无序排放的 一.字典的创建方法 方法1:用大括号包裹键值对从而创建字典 addict={}#创建一个空字典 addict={key1:valu ...
- 软工1816 · Alpha冲刺(8/10)
团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员1(组长):王彬 过去两天完成了哪些任务 推进前后端各个接口的整合 学习jQuery基本语法,为beta阶段的商铺页面做准备 接下 ...
- GIT团队实战博客
项目要求 组长博客 遇到的困难及解决办法 组员1(组长):王彬 遇到的困难 在团队任务分工的时候没有充分照顾到所有人,导致队员们的工作量不均. 现场编程时间不够 解决办法 在此对组员们表示抱歉,由于 ...
- Java实现的词频统计——Web迁移
本次将原本控制台工程迁移到了web工程上,依旧保留原本控制台的版本. 需求: 1.把程序迁移到web平台,通过用户上传TXT的方式接收文件: 2.在页面上给出链接 (如果有封皮.作者.字数.页数等信息 ...
- 常用的一些sql
--根据某一列中包括的逗号将一行数据变多行 select a,c from (with test as (select 'abc' a,'1,2,3' c from dual e) select a, ...
- ZOJ2083_Win the Game
这个题目很有趣,有博弈知识,又有一点智商题的感觉. 题意为给你一段长为n的的线段. 两个游戏者轮流在一段长为2,未被染色的线段上涂色. 无法涂色的游戏者输. 题目有点灵活.关键在于怎么得到Sg函数值呢 ...