【poj2154】Color Polya定理+欧拉函数
$T$ 组询问,用 $n$ 种颜色去染 $n$ 个点的环,旋转后相同视为同构。求不同构的环的个数模 $p$ 的结果。 $T\le 3500,n\le 10^9,p\le 30000$ 。
题解
Polya定理+欧拉函数
根据 poj2409 中得到的结论,答案为:
$\frac{\sum\limits_{i=1}^nn^{\gcd(i,n)}}n=\sum\limits_{i=1}^nn^{\gcd(i,n)-1}$
由于 $n$ 有 $10^9$ 之大,因此考虑优化这个式子。
枚举 $\gcd(i,n)$ ,则有:
$Ans=\sum\limits_{d|n}n^{d-1}\sum\limits_{j=1}^{\frac nd}[\gcd(j·d,n)==d]\\\ \ \ \ \ \ \ =\sum\limits_{d|n}n^{d-1}\sum\limits_{j=1}^{\frac nd}[\gcd(j,\frac nd)==1]\\\ \ \ \ \ \ \ =\sum\limits_{d|n}n^{d-1}\varphi(\frac nd)\\\ \ \ \ \ \ \ =\sum\limits_{k|n}n^{\frac nk-1}\varphi(k)$
此时 $k$ 是 $n$ 的约数,总个数不会超过 $O(\sqrt n)$ 个。但是直接枚举约数的话难以快速算出 $\varphi$ 值。
考虑将 $n$ 分解质因数,设 $n=\prod\limits_{i=1}^mp_i^{a_i}$ ,那么我们dfs枚举 $k=\prod\limits_{i=1}^mp_i^{b_i}\ (0\le b_i\le a_i)$ ,由于 $\varphi$ 是积性函数,所以在枚举的过程中就可以顺便求出 $\varphi$ 值 ,再与 $n^{\frac nk-1}$ 作乘积累加到答案中即可。这样能够不重不漏地枚举到 $n$ 的所有约数并统计答案。
时间复杂度 $O(T\sqrt n\log n)$ ,由于这个根号是远远不满的,因此可以过。
#include <cstdio>
int a[40] , c[40] , tot , n , p , ans;
inline int pow(int x , int y)
{
int ans = 1;
while(y)
{
if(y & 1) ans = ans * x % p;
x = x * x % p , y >>= 1;
}
return ans;
}
void dfs(int x , int d , int v)
{
if(x > tot)
{
ans = (ans + pow(n % p , n / d - 1) * (v % p)) % p;
return;
}
int i;
dfs(x + 1 , d , v);
d *= a[x] , v *= a[x] - 1;
for(i = 1 ; i <= c[x] ; i ++ , d *= a[x] , v *= a[x])
dfs(x + 1 , d , v);
}
int main()
{
int T , i , x;
scanf("%d" , &T);
while(T -- )
{
scanf("%d%d" , &n , &p);
tot = 0 , x = n;
for(i = 2 ; i * i <= x ; i ++ )
{
if(!(x % i))
{
a[++tot] = i , c[tot] = 0;
while(!(x % i)) x /= i , c[tot] ++ ;
}
}
if(x != 1) a[++tot] = x , c[tot] = 1;
ans = 0 , dfs(1 , 1 , 1);
printf("%d\n" , ans);
}
return 0;
}
【poj2154】Color Polya定理+欧拉函数的更多相关文章
- POJ2154 Color【 polya定理+欧拉函数优化】(三个例题)
由于这是第一天去实现polya题,所以由易到难,先来个铺垫题(假设读者是看过课件的,不然可能会对有些“显然”的地方会看不懂): 一:POJ1286 Necklace of Beads :有三种颜色,问 ...
- poj2154Color polya定理+欧拉函数优化
没想到贱贱的数据居然是错的..搞得我调了一中午+晚上一小时(哦不d飞LJH掉RP毕竟他是BUFF)结果重判就对了五次.. 回归正题,这题傻子都看得出是polya定理(如果你不是傻子就看这里),还没有翻 ...
- POJ2154 Color 【Polya定理 + 欧拉函数】
题目 Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). ...
- poj2154(polya定理+欧拉函数)
题目链接:http://poj.org/problem?id=2154 题意:n 种颜色的珠子构成一个长为 n 的环,每种颜色珠子个数无限,也不一定要用上所有颜色,旋转可以得到状态只算一种,问有多少种 ...
- poj 2154 Color【polya定理+欧拉函数】
根据polya定理,答案应该是 \[ \frac{1}{n}\sum_{i=1}^{n}n^{gcd(i,n)} \] 但是这个显然不能直接求,因为n是1e9级别的,所以推一波式子: \[ \frac ...
- 【POJ2154】Color Pólya定理+欧拉函数
[POJ2154]Color 题意:求用$n$种颜色染$n$个珠子的项链的方案数.在旋转后相同的方案算作一种.答案对$P$取模. 询问次数$\le 3500$,$n\le 10^9,P\le 3000 ...
- Luogu4980 【模板】Polya定理(Polya定理+欧拉函数)
对于置换0→i,1→i+1……,其中包含0的循环的元素个数显然是n/gcd(i,n),由对称性,循环节个数即为gcd(i,n). 那么要求的即为Σngcd(i,n)/n(i=0~n-1,也即1~n). ...
- poj 2154 Color(polya计数 + 欧拉函数优化)
http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换 ...
- poj2409 & 2154 polya计数+欧拉函数优化
这两个题都是项链珠子的染色问题 也是polya定理的最基本和最经典的应用之一 题目大意: 用m种颜色染n个珠子构成的项链,问最终形成的等价类有多少种 项链是一个环.通过旋转或者镜像对称都可以得到置换 ...
随机推荐
- 20155323 2016-2017-2 《Java程序设计》第2周学习总结
20155323 2016-2017-2 <Java程序设计>第2周学习总结 教材学习内容总结 对象:对象是类的一个实例,有状态和行为. 类:类是一个模板,它描述一类对象的行为和状态. 第 ...
- ruby学习笔记(2)-chomp,chop的区别
还没开始系统性的学习Ruby,最近在看metasploit框架的exploit会涉及到Ruby脚本,也就硬着头皮一遍查阅资料一遍做些笔记吧. Ruby字符串中存在chop和chomp的内置函数.我在h ...
- 【LG3206】[HNOI2010]城市建设
[LG3206][HNOI2010]城市建设 题面 洛谷 题解 有一种又好想.码得又舒服的做法叫线段树分治+\(LCT\) 但是因为常数过大,无法跑过此题. 所以这里主要介绍另外一种玄学\(cdq\) ...
- Python:静态方法、类方法、实例方法
1. 静态方法@staticmethod (1)无需自身对象的self参数和自身类的cls参数,可直接通过 类名.方法名 进行调用 (2)Python中并不是真正意义上的静态方法,因为类定义本身就是个 ...
- angularJS ng-repeat中的directive 动态加载template
有个需求,想实现一个html组件,传入不同的typeId,渲染出不同的表单元素. <div ng-repeat="field in vm.data"> <magi ...
- Unity商店下载的文件保存路径?
Win7系统: C:\Users\系统用户名\AppData\Roaming\Unity\Asset Store MAC:"~/Library/Unity/Asset\ Store" ...
- scikit-learn API
scikit-learn API 这是scikit-learn的类和函数参考.有关详细信息,请参阅完整的用户指南,因为类和功能原始规格可能不足以提供有关其用途的完整指南. sklearn.base:基 ...
- python爬虫-爬取盗墓笔记
本来今天要继续更新 scrapy爬取美女图片 系列文章,可是发现使用免费的代理ip都非常不稳定,有时候连接上,有时候连接不上,所以我想找到稳定的代理ip,下次再更新 scrapy爬取美女图片之应对反 ...
- Keil出错解决方法
1.安装KEIL5后创建工程后出现这个报错 解决方法:打开下图目录的文件. Keil.STM32F1xx_DFP.pdsc文件是只读文件,必须将只读属性取消. 如下图所示,注释掉红色圆圈的哪一行,保存 ...
- lxd&openstack-lxd源码剖析
lxd:https://linuxcontainers.org/lxd/,目标是融入到openstack体系被管理,像虚拟机一样被管理使用.从如下图可知,并非走的是libvirt-lxc路线,而是no ...