传送门

直接求连通的不好做,考虑容斥

设 \(g_i\) 表示至少有 \(i\) 个连通块的方案数,\(f_i\) 表示恰好有 \(i\) 个的

那么

\[g_x=\sum_{i=x}^{n}\begin{Bmatrix}x \\ i\end{Bmatrix}f_i\iff f_x=\sum_{i=x}^{n}(-1)^{i-x}\begin{bmatrix}x \\ i\end{bmatrix}g_i
\]

那么

\[f_1=\sum_{i=1}^{n}(-1)^{i-1}(i-1)!g_i
\]

求 \(g\)

考虑枚举点的拆分,相当于是不同的集合之没有边,这部分直接用线性基求出方案

# include <bits/stdc++.h>
using namespace std;
typedef long long ll; int n = 1, graph[65][15][15], m, id[15];
char ch[2333];
ll fac[15], ans, bc[65], v; void Dfs(int x, int f) {
register int i, j, k, tot, num;
if (x > n) {
memset(bc, 0, sizeof(bc)), num = 0;
for (i = 1; i <= m; ++i) {
for (v = tot = 0, j = 1; j <= n; ++j)
for (k = j + 1; k <= n; ++k)
if (id[j] != id[k]) v |= (ll)graph[i][j][k] << tot, ++tot;
for (j = 0; j < tot; ++j)
if (v >> j & 1) {
if (!bc[j]) {
bc[j] = v, ++num;
break;
}
v ^= bc[j];
}
}
ans += (ll)((f & 1) ? 1 : -1) * fac[f - 1] * (1ll << (m - num));
return;
}
for (i = 1; i <= f + 1; ++i) id[x] = i, Dfs(x + 1, max(i, f));
} int main() {
register int i, j, k, len, cnt;
for (scanf("%d", &m), i = 1; i <= m; ++i) {
scanf(" %s", ch + 1), len = strlen(ch + 1);
while (n * (n - 1) / 2 < len) ++n;
for (cnt = 0, j = 1; j <= n; ++j)
for (k = j + 1; k <= n; ++k) graph[i][j][k] = ch[++cnt] - '0';
}
for (fac[0] = 1, i = 1; i <= n; ++i) fac[i] = fac[i - 1] * i;
Dfs(1, 0), printf("%lld\n", ans);
return 0;
}

BZOJ4671:异或图的更多相关文章

  1. bzoj4671: 异或图——斯特林反演

    [BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办 ...

  2. bzoj4671: 异或图

    bzoj4671: 异或图 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 ( ...

  3. bzoj4671 异或图(斯特林反演,线性基)

    bzoj4671 异或图(斯特林反演,线性基) 祭奠天国的bzoj. 题解时间 首先考虑类似于容斥的东西. 设 $ f_{ i } $ 为至少有 $ i $ 个连通块的方案数, $ g_{ i } $ ...

  4. BZOJ4671异或图

    题目描述 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 ...

  5. BZOJ4671 异或图(容斥+线性基)

    题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1 ...

  6. BZOJ4671 异或图 斯特林反演+线性基

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4671 题解 半年前刚学计数的时候对这道题怀着深深的景仰,现在终于可以来做这道题了. 类似于一般 ...

  7. 【BZOJ4671】异或图(斯特林反演)

    [BZOJ4671]异或图(斯特林反演) 题面 BZOJ Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出 ...

  8. 【XSY2701】异或图 线性基 容斥原理

    题目描述 定义两个图\(G_1\)与\(G_2\)的异或图为一个图\(G\),其中图\(G\)的每条边在\(G_1\)与\(G_2\)中出现次数和为\(1\). 给你\(m\)个图,问你这\(m\)个 ...

  9. BZOJ 4671 异或图 | 线性基 容斥 DFS

    题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...

  10. 【bzoj4671】异或图(容斥+斯特林反演+线性基)

    传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...

随机推荐

  1. 基于python复制蓝鲸作业平台

    前言 去年看武sir代码发布的视频无意中听到了蓝鲸平台但是一直没深究,前一段时间公司要搞一个代码发布平台,但是需求变化很多一直找不到一个很好的参考 模板,直到试用了一下蓝鲸作业平台发现“一切皆作业”的 ...

  2. P2046 [NOI2010]海拔

    题目链接 题意分析 首先一看就知道这是一道最小割 这里奉上最小割的代码 #include<iostream> #include<cstdio> #include<cstr ...

  3. css中代码格式以及@import的语法结构

    CSS中代码格式 CSS是Cascading Style Sheets(层叠样式表)的缩写.是一种对web文档添加样式的简单机制,属于表现层的布局语言. 1.基本语法规范分析一个典型CSS的语句: p ...

  4. c/c++ int,float,short 大小端转换函数

    unsigned int(uint32_t)大小端转换函数 unsigned int BLEndianUint32(unsigned int value) { return ((value & ...

  5. Git、Github、码云 笔记汇总

    从本地恢复码云的项目 把本地项目同步到码云 CBoard 基于0.4.1的旧版本的分支修改合并到0.4.2新版本里面 通过git命令行把一个分支的其中一个commit(提交)合并到另外一个分支里面去

  6. Polycarp Restores Permutation

    http://codeforces.com/contest/1141/problem/C一开始没想法暴力的,next_permutation(),TLE 后来看了这篇https://blog.csdn ...

  7. BLE pairing vs. bonding

    differece between pairing and bonding .see

  8. 一款开源免费的办公套件系统:DzzOffice详细部署

    一.系统环境 个人建议centos 7 系统 cat /etc/redhat-release CentOS Linux release (Core) 基本更新 yum update -y 基本优化 关 ...

  9. 剑指offer——面试题32:从上到下打印二叉树

    void BFS(BinaryTreeNode* pRoot) { if(pRoot==nullptr) { cout<<"empty binary tree!"< ...

  10. c# 操作excle

    添加引用  Microsoft.Office.Interop.Excel; 添加命名空间 using Excel = Microsoft.Office.Interop.Excel; //创建接口变量- ...