传送门

直接求连通的不好做,考虑容斥

设 \(g_i\) 表示至少有 \(i\) 个连通块的方案数,\(f_i\) 表示恰好有 \(i\) 个的

那么

\[g_x=\sum_{i=x}^{n}\begin{Bmatrix}x \\ i\end{Bmatrix}f_i\iff f_x=\sum_{i=x}^{n}(-1)^{i-x}\begin{bmatrix}x \\ i\end{bmatrix}g_i
\]

那么

\[f_1=\sum_{i=1}^{n}(-1)^{i-1}(i-1)!g_i
\]

求 \(g\)

考虑枚举点的拆分,相当于是不同的集合之没有边,这部分直接用线性基求出方案

# include <bits/stdc++.h>
using namespace std;
typedef long long ll; int n = 1, graph[65][15][15], m, id[15];
char ch[2333];
ll fac[15], ans, bc[65], v; void Dfs(int x, int f) {
register int i, j, k, tot, num;
if (x > n) {
memset(bc, 0, sizeof(bc)), num = 0;
for (i = 1; i <= m; ++i) {
for (v = tot = 0, j = 1; j <= n; ++j)
for (k = j + 1; k <= n; ++k)
if (id[j] != id[k]) v |= (ll)graph[i][j][k] << tot, ++tot;
for (j = 0; j < tot; ++j)
if (v >> j & 1) {
if (!bc[j]) {
bc[j] = v, ++num;
break;
}
v ^= bc[j];
}
}
ans += (ll)((f & 1) ? 1 : -1) * fac[f - 1] * (1ll << (m - num));
return;
}
for (i = 1; i <= f + 1; ++i) id[x] = i, Dfs(x + 1, max(i, f));
} int main() {
register int i, j, k, len, cnt;
for (scanf("%d", &m), i = 1; i <= m; ++i) {
scanf(" %s", ch + 1), len = strlen(ch + 1);
while (n * (n - 1) / 2 < len) ++n;
for (cnt = 0, j = 1; j <= n; ++j)
for (k = j + 1; k <= n; ++k) graph[i][j][k] = ch[++cnt] - '0';
}
for (fac[0] = 1, i = 1; i <= n; ++i) fac[i] = fac[i - 1] * i;
Dfs(1, 0), printf("%lld\n", ans);
return 0;
}

BZOJ4671:异或图的更多相关文章

  1. bzoj4671: 异或图——斯特林反演

    [BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办 ...

  2. bzoj4671: 异或图

    bzoj4671: 异或图 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 ( ...

  3. bzoj4671 异或图(斯特林反演,线性基)

    bzoj4671 异或图(斯特林反演,线性基) 祭奠天国的bzoj. 题解时间 首先考虑类似于容斥的东西. 设 $ f_{ i } $ 为至少有 $ i $ 个连通块的方案数, $ g_{ i } $ ...

  4. BZOJ4671异或图

    题目描述 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 ...

  5. BZOJ4671 异或图(容斥+线性基)

    题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1 ...

  6. BZOJ4671 异或图 斯特林反演+线性基

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4671 题解 半年前刚学计数的时候对这道题怀着深深的景仰,现在终于可以来做这道题了. 类似于一般 ...

  7. 【BZOJ4671】异或图(斯特林反演)

    [BZOJ4671]异或图(斯特林反演) 题面 BZOJ Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出 ...

  8. 【XSY2701】异或图 线性基 容斥原理

    题目描述 定义两个图\(G_1\)与\(G_2\)的异或图为一个图\(G\),其中图\(G\)的每条边在\(G_1\)与\(G_2\)中出现次数和为\(1\). 给你\(m\)个图,问你这\(m\)个 ...

  9. BZOJ 4671 异或图 | 线性基 容斥 DFS

    题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...

  10. 【bzoj4671】异或图(容斥+斯特林反演+线性基)

    传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...

随机推荐

  1. 10分钟教你用Python打造微信天气预报机器人

    01 前言 最近武汉的天气越来越恶劣了.动不动就下雨,所以,拥有一款好的天气预报工具,对于我们大学生来说,还真是挺重要的了.好了,自己动手,丰衣足食,我们来用Python打造一个天气预报的微信机器人吧 ...

  2. iOS开发~制作同时支持armv7,armv7s,arm64,i386,x86_64的静态库.a以及 FrameWork 的创建

    armv7,armv7s,arm64,i386,x86_64 详解 一.概要 平时项目开发中,可能使用第三方提供的静态库.a,如果.a提供方技术不成熟,使用的时候就会出现问题,例如: 在真机上编译报错 ...

  3. Java NIO学习与记录(八): Reactor两种多线程模型的实现

    Reactor两种多线程模型的实现 注:本篇文章例子基于上一篇进行:Java NIO学习与记录(七): Reactor单线程模型的实现 紧接着上篇Reactor单线程模型的例子来,假设Handler的 ...

  4. 【算法笔记】A1060 Are They Equal

    1060 Are They Equal (25 分)   If a machine can save only 3 significant digits, the float numbers 1230 ...

  5. Java Service Wrapper简介与使用(转)

    本文转自https://www.cnblogs.com/zcy_soft/p/3738947.html,写的非常好,珍藏一下 1. wrapper的意思? wrapper在此处理解为“包装”. 2. ...

  6. php 判断字符串之间包含关系

    之前常用stristr ,  strpos判断. 因为处理1000W * 1000W级别,循环就是漫长漫长... 在此,对stristr, strpos, explode判断字符串包含关系处理速度对比 ...

  7. cors允许的方法和contype-type

    https://fetch.spec.whatwg.org/#cors-safelisted-request-header get head post text/plain multipart/for ...

  8. [中英对照]Introduction to Remote Direct Memory Access (RDMA) | RDMA概述

    前言: 什么是RDMA? 简单来说,RDMA就是指不通过操作系统(OS)内核以及TCP/IP协议栈在网络上传输数据,因此延迟(latency)非常低,CPU消耗非常少. 下面给出一篇简单介绍RDMA的 ...

  9. linux 升级-杂

    apt-cache search linux apt-cache search linux | grep generic apt-cache search linux | grep 4.10. apt ...

  10. Python(1):入门

    安装: 在linux中一般都自带有python2.7的版本,如果想升级python到最新的版本可以参考其他博客(http://www.cnblogs.com/lanxuezaipiao/archive ...