本文发表于本人博客

今天接着上次【Hadoop mapreduce自定义排序WritableComparable】文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需要了解的可以看看我在博客园的评论,现在开始。

首先我们查看下Job这个类,发现有setGroupingComparatorClass()这个方法,具体源码如下:

  /**
* Define the comparator that controls which keys are grouped together
* for a single call to
* {@link Reducer#reduce(Object, Iterable,
* org.apache.hadoop.mapreduce.Reducer.Context)}
* @param cls the raw comparator to use
* @throws IllegalStateException if the job is submitted
*/
public void setGroupingComparatorClass(Class<? extends RawComparator> cls
) throws IllegalStateException {
ensureState(JobState.DEFINE);
conf.setOutputValueGroupingComparator(cls);
}

从方法的源码可以看出这个方法是定义自定义键分组功能。设置这个自定义分组类必须满足extends RawComparator,那我们可以看下这个类的源码:

/**
* <p>
* A {@link Comparator} that operates directly on byte representations of
* objects.
* </p>
* @param <T>
* @see DeserializerComparator
*/
public interface RawComparator<T> extends Comparator<T> {
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2);
}

然而这个RawComparator是泛型继承Comparator接口的,简单看了下那我们来自定义一个类继承RawComparator,代码如下:

public class MyGrouper implements RawComparator<SortAPI> {
@Override
public int compare(SortAPI o1, SortAPI o2) {
return (int)(o1.first - o2.first);
}
@Override
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
int compareBytes = WritableComparator.compareBytes(b1, s1, 8, b2, s2, 8);
return compareBytes;
} }

源码中SortAPI是上节自定义排序中的定义对象,第一个方法从注释可以看出是比较2个参数的大小,返回的是自然整数;第二个方法是在反序列化时比较,所以需要是用字节比较。接下来我们继续看看自定义MyMapper类:

public class MyMapper extends Mapper<LongWritable, Text, SortAPI, LongWritable> {
@Override
protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException {
String[] splied = value.toString().split("\t");
try {
long first = Long.parseLong(splied[0]);
long second = Long.parseLong(splied[1]);
context.write(new SortAPI(first,second), new LongWritable(1));
} catch (Exception e) {
System.out.println(e.getMessage());
}
}
}

自定义MyReduce类:

public class MyReduce extends Reducer<SortAPI, LongWritable, LongWritable, LongWritable> {
@Override
protected void reduce(SortAPI key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
context.write(new LongWritable(key.first), new LongWritable(key.second));
} }

自定义SortAPI类:

public class SortAPI implements WritableComparable<SortAPI> {
public Long first;
public Long second;
public SortAPI(){ }
public SortAPI(long first,long second){
this.first = first;
this.second = second;
} @Override
public int compareTo(SortAPI o) {
return (int) (this.first - o.first);
} @Override
public void write(DataOutput out) throws IOException {
out.writeLong(first);
out.writeLong(second);
} @Override
public void readFields(DataInput in) throws IOException {
this.first = in.readLong();
this.second = in.readLong(); } @Override
public int hashCode() {
return this.first.hashCode() + this.second.hashCode();
} @Override
public boolean equals(Object obj) {
if(obj instanceof SortAPI){
SortAPI o = (SortAPI)obj;
return this.first == o.first && this.second == o.second;
}
return false;
} @Override
public String toString() {
return "输出:" + this.first + ";" + this.second;
} }

接下来准备数据,数据如下:

1       2
1 1
3 0
3 2
2 2
1 2

上传至hdfs://hadoop-master:9000/grouper/input/test.txt,main代码如下:

public class Test {
static final String OUTPUT_DIR = "hdfs://hadoop-master:9000/grouper/output/";
static final String INPUT_DIR = "hdfs://hadoop-master:9000/grouper/input/test.txt";
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, Test.class.getSimpleName());
job.setJarByClass(Test.class);
deleteOutputFile(OUTPUT_DIR);
//1设置输入目录
FileInputFormat.setInputPaths(job, INPUT_DIR);
//2设置输入格式化类
job.setInputFormatClass(TextInputFormat.class);
//3设置自定义Mapper以及键值类型
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(SortAPI.class);
job.setMapOutputValueClass(LongWritable.class);
//4分区
job.setPartitionerClass(HashPartitioner.class);
job.setNumReduceTasks(1);
//5排序分组
job.setGroupingComparatorClass(MyGrouper.class);
//6设置在一定Reduce以及键值类型
job.setReducerClass(MyReduce.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(LongWritable.class);
//7设置输出目录
FileOutputFormat.setOutputPath(job, new Path(OUTPUT_DIR));
//8提交job
job.waitForCompletion(true);
} static void deleteOutputFile(String path) throws Exception{
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(new URI(INPUT_DIR),conf);
if(fs.exists(new Path(path))){
fs.delete(new Path(path));
}
}
}

执行代码,然后在节点上用终端输入:hadoop fs -text /grouper/output/part-r-00000查看结果:

1       2
2 2
3 0

接下来我们修改下SortAPI类的compareTo()方法:

    @Override
public int compareTo(SortAPI o) {
long mis = (this.first - o.first) * -1;
if(mis != 0 ){
return (int)mis;
}
else{
return (int)(this.second - o.second);
}
}

再次执行并查看/grouper/output/part-r-00000文件:

3       0
2 2
1 1

这样我们就得出了同样的数据分组结果会受到排序算法的影响,比如排序是倒序那么分组也是先按照倒序数据源进行分组输出。我们还可以在map函数以及reduce函数中打印记录(过程省略)这样经过对比也得出分组阶段:键值对中key相同(即compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2)方法返回0)的则为一组,当前组再按照顺序选择第一个往缓冲区输出(也许会存储到硬盘)。其它的相同key的键值对就不会再往缓冲区输出了。在百度上检索到这边文章,其中它的分组是把map函数输出的value全部迭代到同一个key中,就相当于上面{key,value}:{1,{2,1,2}},这个结果跟最开始没有自定义分组时是一样的,我们可以在reduce函数输出Iterable<LongWritable> values进行查看,其实我觉得这样的才算是分组吧就像数据查询一样。

在这里我们应该要弄懂分组与分区的区别。分区是对输出结果文件进行分类拆分文件以便更好查看,比如一个输出文件包含所有状态的http请求,那么为了方便查看通过分区把请求状态分成几个结果文件。分组就是把一些相同键的键值对进行计算减少输出;分区之后数据全部还是照样输出到reduce端,而分组的话就有所减少了;当然这2个步骤也是不同的阶段执行。

这次先到这里。坚持记录点点滴滴!

Hadoop mapreduce自定义分组RawComparator的更多相关文章

  1. Hadoop mapreduce自定义分区HashPartitioner

    本文发表于本人博客. 在上一篇文章我写了个简单的WordCount程序,也大致了解了下关于mapreduce运行原来,其中说到还可以自定义分区.排序.分组这些,那今天我就接上一次的代码继续完善实现自定 ...

  2. [Hadoop] - Mapreduce自定义Counter

    在Hadoop的MR程序开发中,经常需要统计一些map/reduce的运行状态信息,这个时候我们可以通过自定义Counter来实现,这个实现的方式是不是通过配置信息完成的,而是通过代码运行时检查完成的 ...

  3. 【Hadoop】Hadoop MR 自定义分组 Partition机制

    1.概念 2.Hadoop默认分组机制--所有的Key分到一个组,一个Reduce任务处理 3.代码示例 FlowBean package com.ares.hadoop.mr.flowgroup; ...

  4. Hadoop mapreduce自定义排序WritableComparable

    本文发表于本人博客. 今天继续写练习题,上次对分区稍微理解了一下,那根据那个步骤分区.排序.分组.规约来的话,今天应该是要写个排序有关的例子了,那好现在就开始! 说到排序我们可以查看下hadoop源码 ...

  5. hadoop的自定义分组实现 (Partition机制)

    hadoop开发中我们会遇到类似这样的问题,比如 如何将不同省份的手机号分别输出到不同的文件中,本片文章将对hadoop内置的Partition类进行重写以解决这个问题. MapReduce的使用者通 ...

  6. Hadoop MapReduce自定义数据类型

    一 自定义数据类型的实现 1.继承接口Writable,实现其方法write()和readFields(), 以便该数据能被序列化后完成网络传输或文件输入/输出: 2.如果该数据需要作为主键key使用 ...

  7. 关于MapReduce中自定义分组类(三)

    Job类  /**    * Define the comparator that controls which keys are grouped together    * for a single ...

  8. 一脸懵逼学习Hadoop中的MapReduce程序中自定义分组的实现

    1:首先搞好实体类对象: write 是把每个对象序列化到输出流,readFields是把输入流字节反序列化,实现WritableComparable,Java值对象的比较:一般需要重写toStrin ...

  9. Hadoop自定义分组Group

    matadata: hadoop a spark a hive a hbase a tachyon a storm a redis a 自定义分组 import org.apache.hadoop.c ...

随机推荐

  1. mybatis由浅入深day02_6延迟加载_延迟加载总结

    6 延迟加载 6.1 什么是延迟加载 需要查询关联信息时,使用mybatis延迟加载特性可有效的减少数据库压力,首次查询只查询主要信息,关联信息等用户获取时再加载. resultMap可以实现高级映射 ...

  2. Mac下,如何把项目托管到Github上(Github Desktop的使用)

    在上一篇中,详细讲解了使用X-code和终端配合上传代码的方法,这种方法比较传统,中间会有坑,英文看起来也费劲,不过Github官方提供了一个Mac版的客户端,如下图:

  3. swift - 移除界面上的所有元素

    下面代码可以遍历移除页面视图上的所有元件: //清空所有子视图 func clearViews() { for v in self.view.subviews as [UIView] { v.remo ...

  4. Kafka中Producer端封装自定义消息

    我们知道KeywordMessage就是被kafka发送和存储的对象.所以只需要模拟出这个就可以发送自定义消息了. 比如我需要将用户的id,user,age,address和访问ip和访问date记录 ...

  5. Linux 任务计划:crontab

    (1) 什么是任务计划:也就是设置服务器在某个指定的时间执行某个指定的任务,比如执行一个命令,或执行一个脚本(2) Linux 使用 cron 服务来制定任务计划,cron 是服务名称,crond 是 ...

  6. 批量执行命令:fabric

    Fabric 可以通过 SSH 在多台客户端主机上批量执行任务,是基于 paramiko 封装开发的,paramiko 更底层一些,安装方法如下: [root@localhost ~]$ yum in ...

  7. Xdebug安装与使用

    为什么需要Debugger? 很多PHP程序员调试使用echo.print_r().var_dump().printf()等,其实对 于有较丰富开发经验的程序员来说这些也已经足够了,他们往往可以在程序 ...

  8. iOS 9 分屏多任务:入门(中文版)

    本文转载至 http://www.cocoachina.com/ios/20150714/12555.html 本文由钢铁侠般的卿哥(微博)翻译自苹果官方文档:Adopting Multitaskin ...

  9. UITextView 实现placeholder的方法

    本文转载至 http://www.cnblogs.com/easonoutlook/archive/2012/12/28/2837665.html 在UITextField中自带placeholder ...

  10. LeetCode——Ugly Number

    Description: Write a program to check whether a given number is an ugly number. Ugly numbers are pos ...