I was surprised by greta. I had assumed that the tensorflow and reticulate packages would eventually enable R developers to look beyond deep learning applications and exploit the TensorFlow platform to create all manner of production-grade statistical applications. But I wasn’t thinking Bayesian. After all, Stan is probably everything a Bayesian modeler could want. Stan is a powerful, production-level probability distribution modeling engine with a slick R interface, deep documentation, and a dedicated development team.

But greta lets users write TensorFlow-based Bayesian models directly in R! What could be more charming? greta removes the barrier of learning an intermediate modeling language while still promising to deliver high-performance MCMC models that run anywhere TensorFlow can go.

In this post, I’ll introduce you to greta with a simple model used by Richard McElreath in section 8.3 of his iconoclastic book:Statistical Rethinking: A Bayesian Course with Examples in R and Stan. This model seeks to explain the log of a country’s GDP based on a measure of terrain ruggedness while controlling for whether or not the country is in Africa. I am going to use it just to illustrate MCMC sampling with greta. The extended example in McElreath’s book, however, is a meditation on the subtleties of modeling interactions, and is well worth studying.

First, we load the required packages and fetch the data. DiagrammeR is for plotting the TensorFlow flow diagram of the model, andbayesplot is used to plot trace diagrams of the Markov chains. The rugged data set which provides 52 variables for 234 is fairly interesting, but we will use a trimmed-down data set with only 170 counties and three variables.

library(rethinking)
library(greta)
library(DiagrammeR)
library(bayesplot)
library(ggplot2) # Example from section 8.3 Statistical Rethinking
data(rugged)
d <- rugged
d$log_gdp <- log(d$rgdppc_2000)
dd <- d[complete.cases(d$rgdppc_2000), ]
dd_trim <- dd[ , c("log_gdp","rugged","cont_africa")]
head(dd_trim)
##     log_gdp rugged cont_africa
## 3 7.492609 0.858 1
## 5 8.216929 3.427 0
## 8 9.933263 0.769 0
## 9 9.407032 0.775 0
## 10 7.792343 2.688 0
## 12 9.212541 0.006 0
set.seed(1234)

In this section of code, we set up the TensorFlow data structures. The first step is to move the data into greta arrays. These data structures behave similarly to R arrays in that they can be manipulated with functions. However, greta doesn’t immediately calculate values for new arrays. It works out the size and shape of the result and creates a place-holder data structure.

#data
g_log_gdp <- as_data(dd_trim$log_gdp)
g_rugged <- as_data(dd_trim$rugged)
g_cont_africa <- as_data(dd_trim$cont_africa)

In this section, we set up the Bayesian model. All parameters need prior probability distributions. Note that the parameters abR,bAbARsigma, and mu are all new greta arrays that don’t contain any data. a is 1 x 1 array and mu is a 170 x 1 array with one slot for each observation.

The distribution() function sets up the likelihood function for the model.

# Variables and Priors

a <- normal(0, 100)
bR <- normal(0, 10)
bA <- normal(0, 10)
bAR <- normal(0,10)
sigma <- cauchy(0,2,truncation=c(0,Inf)) a # Look at this greata array
## greta array (variable following a normal distribution)
##
## [,1]
## [1,] ?
# operations
mu <- a + bR*g_rugged + bA*g_cont_africa + bAR*g_rugged*g_cont_africa dim(mu)
## [1] 170   1
# likelihood
distribution(g_log_gdp) = normal(mu, sigma)

The model() function does all of the work. It fits the model and produces a fairly complicated object organized as three lists that contain, respectively, the R6 class, TensorFlow structures, and the various greta data arrays.

# defining the model
mod <- model(a,bR,bA,bAR,sigma) str(mod,give.attr=FALSE,max.level=1)
## List of 3
## $ dag :Classes 'dag_class', 'R6' <dag_class>
## Public:
## adjacency_matrix: function ()
## build_dag: function (greta_array_list)
## clone: function (deep = FALSE)
## compile: TRUE
## define_gradients: function ()
## define_joint_density: function ()
## define_tf: function ()
## example_parameters: function (flat = TRUE)
## find_node_neighbours: function ()
## get_tf_names: function (types = NULL)
## gradients: function (adjusted = TRUE)
## initialize: function (target_greta_arrays, tf_float = tf$float32, n_cores = 2L,
## log_density: function (adjusted = TRUE)
## make_names: function ()
## n_cores: 4
## node_list: list
## node_tf_names: variable_1 distribution_1 data_1 data_2 operation_1 oper ...
## node_types: variable distribution data data operation operation oper ...
## parameters_example: list
## send_parameters: function (parameters, flat = TRUE)
## subgraph_membership: function ()
## target_nodes: list
## tf_environment: environment
## tf_float: tensorflow.python.framework.dtypes.DType, python.builtin.object
## tf_name: function (node)
## trace_values: function ()
## $ target_greta_arrays :List of 5
## $ visible_greta_arrays:List of 9

Plotting mod produces the TensorFlow flow diagram that shows the structure of the underlying TensorFlow model, which is simple for this model and easily interpretable.

# plotting
plot(mod)

Next, we use the greta function mcmc() to sample from the posterior distributions defined in the model.

# sampling
draws <- mcmc(mod, n_samples = 1000)
summary(draws)
##
## Iterations = 1:1000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## a 9.2225 0.13721 0.004339 0.004773
## bR -0.2009 0.07486 0.002367 0.002746
## bA -1.9485 0.23033 0.007284 0.004435
## bAR 0.3992 0.13271 0.004197 0.003136
## sigma 0.9527 0.04892 0.001547 0.001744
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## a 8.9575 9.1284 9.2306 9.3183 9.47865
## bR -0.3465 -0.2501 -0.1981 -0.1538 -0.05893
## bA -2.3910 -2.1096 -1.9420 -1.7876 -1.50781
## bAR 0.1408 0.3054 0.3954 0.4844 0.66000
## sigma 0.8616 0.9194 0.9520 0.9845 1.05006

Now that we have the samples of the posterior distributions of the parameters in the model, it is straightforward to examine them. Here, we plot the posterior distribution of the interaction term.

mat <- data.frame(matrix(draws[[1]],ncol=5))
names(mat) <- c("a","bR","bA","bAR","sigma")
#head(mat)
# http://www.cookbook-r.com/Graphs/Plotting_distributions_(ggplot2)/
ggplot(mat, aes(x=bAR)) +
geom_histogram(aes(y=..density..), binwidth=.05, colour="black", fill="white") +
geom_density(alpha=.2, fill="#FF6666")

Finally, we examine the trace plots for the MCMC samples using the greta function mcmc_trace(). The plots for each parameter appear to be stationary (flat, i.e., centered on a constant value) and well-mixed (there is no obvious correlation between points).mcmc_intervals() plots the uncertainty intervals for each parameter computed from posterior draws with all chains merged.

mcmc_trace(draws)

mcmc_intervals(draws)

So there it is - a Bayesian model using Hamiltonian Monte Carlo sampling built in R and evaluated by TensorFlow.

For an expert discussion of the model, have a look at McElreath’s book, described at the link above. For more on greta, see thepackage documentation. And please, do take the time to read about greta’s namesake: Greta Hermann, a remarkable woman - mathematician, philosopher, educator, social activist, and theoretical physicist who found the error in John von Neuman’s “proof” of the “No hidden variables theorem” of Quantum Mechanics.

转自:https://rviews.rstudio.com/2018/04/23/on-first-meeting-greta/

An Introduction to Greta的更多相关文章

  1. A chatroom for all! Part 1 - Introduction to Node.js(转发)

    项目组用到了 Node.js,发现下面这篇文章不错.转发一下.原文地址:<原文>. ------------------------------------------- A chatro ...

  2. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  3. INTRODUCTION TO BIOINFORMATICS

    INTRODUCTION TO BIOINFORMATICS      这套教程源自Youtube,算得上比较完整的生物信息学领域的视频教程,授课内容完整清晰,专题化的讲座形式,细节讲解比国内的京师大 ...

  4. mongoDB index introduction

    索引为mongoDB的查询提供了有效的解决方案,如果没有索引,mongodb必须的扫描文档集中所有记录来match查询条件的记录.然而这些扫描是没有必要,而且每一次操作mongod进程会处理大量的数据 ...

  5. (翻译)《Hands-on Node.js》—— Introduction

    今天开始会和大熊君{{bb}}一起着手翻译node的系列外文书籍,大熊负责翻译<Node.js IN ACTION>一书,而我暂时负责翻译这本<Hands-on Node.js> ...

  6. Introduction of OpenCascade Foundation Classes

    Introduction of OpenCascade Foundation Classes Open CASCADE基础类简介 eryar@163.com 一.简介 1. 基础类概述 Foundat ...

  7. 000.Introduction to ASP.NET Core--【Asp.net core 介绍】

    Introduction to ASP.NET Core Asp.net core 介绍 270 of 282 people found this helpful By Daniel Roth, Ri ...

  8. Introduction to Microsoft Dynamics 365 licensing

    Microsoft Dynamics 365 will be released on November 1. In preparation for that, Scott Guthrie hosted ...

  9. RabbitMQ消息队列(一): Detailed Introduction 详细介绍

     http://blog.csdn.net/anzhsoft/article/details/19563091 RabbitMQ消息队列(一): Detailed Introduction 详细介绍 ...

随机推荐

  1. ESP8266调试笔记

    ESP8266 新款版本使用用简要: 此版本若想从FLASH启动进入AT系统,只需中间四个脚接VCC高电平即可,其中GPIO0为高电平代表从FLASH启动,GPIO0为低电平代表进入系统升级状态,此时 ...

  2. 递归--练习7--noi1750全排列

    递归--练习7--noi1750全排列 一.心得 二.题目 1750:全排列 总时间限制:  1000ms 内存限制:  65536kB 描述 给定一个由不同的小写字母组成的字符串,输出这个字符串的所 ...

  3. 第10章 Pry, 强大的pry-rails和相关的几个好用gem

    https://asciinema.org/a/0KtCL9HB1bP08wNHLfIeOMa8K 本章讲了如何定位❌,和排除bug. Pry  (5000

  4. Android------视频播放器(包含全屏播放,快退,快进,腾讯新闻的列表播放等)

    前段时间做了一个新闻APP,涉及到了列表视频播放,和腾讯新闻APP差不多,总结了一下代码,写了一个Demo来分享给大家. 用了  TabLayout+RecylerView+自定义视频控件  完成的 ...

  5. CSS padding 属性

    定义和用法 padding 简写属性在一个声明中设置所有内边距属性. 说明 这个简写属性设置元素所有内边距的宽度,或者设置各边上内边距的宽度.行内非替换元素上设置的内边距不会影响行高计算:因此,如果一 ...

  6. 黑暗世界的搜索引擎 https://fofa.so/ https://www.shodan.io https://www.zoomeye.org 查找设备漏洞

    from:http://www.freebuf.com/sectool/121339.html 什么是 Shodan? 首先,Shodan 是一个搜索引擎,但它与 Google 这种搜索网址的搜索引擎 ...

  7. windows下使用python的scrapy爬虫框架,爬取个人博客文章内容信息

    scrapy作为流行的python爬虫框架,简单易用,这里简单介绍如何使用该爬虫框架爬取个人博客信息.关于python的安装和scrapy的安装配置请读者自行查阅相关资料,或者也可以关注我后续的内容. ...

  8. 如何在JavaScript中手动创建类数组对象

    前言 关于什么是js的类数组对象这里不再赘述.可以参考这个链接,还有这里. js中类数组对象很多,概念简单的讲就是看上去像数组,又不是数组,可以使用数字下标方式访问又没有数组方法. 例: argume ...

  9. 项目代码matlab

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ...

  10. c++ 读取所有图片

    copyright by Jun Yang, SUN YAT-SEN UNIVERSITY //FileList.h ///////////////////////////////////////// ...