An Introduction to Greta
I was surprised by greta. I had assumed that the tensorflow and reticulate packages would eventually enable R developers to look beyond deep learning applications and exploit the TensorFlow platform to create all manner of production-grade statistical applications. But I wasn’t thinking Bayesian. After all, Stan is probably everything a Bayesian modeler could want. Stan is a powerful, production-level probability distribution modeling engine with a slick R interface, deep documentation, and a dedicated development team.
But greta lets users write TensorFlow-based Bayesian models directly in R! What could be more charming? greta removes the barrier of learning an intermediate modeling language while still promising to deliver high-performance MCMC models that run anywhere TensorFlow can go.
In this post, I’ll introduce you to greta with a simple model used by Richard McElreath in section 8.3 of his iconoclastic book:Statistical Rethinking: A Bayesian Course with Examples in R and Stan. This model seeks to explain the log of a country’s GDP based on a measure of terrain ruggedness while controlling for whether or not the country is in Africa. I am going to use it just to illustrate MCMC sampling with greta. The extended example in McElreath’s book, however, is a meditation on the subtleties of modeling interactions, and is well worth studying.
First, we load the required packages and fetch the data. DiagrammeR is for plotting the TensorFlow flow diagram of the model, andbayesplot is used to plot trace diagrams of the Markov chains. The rugged data set which provides 52 variables for 234 is fairly interesting, but we will use a trimmed-down data set with only 170 counties and three variables.
library(rethinking)
library(greta)
library(DiagrammeR)
library(bayesplot)
library(ggplot2)
# Example from section 8.3 Statistical Rethinking
data(rugged)
d <- rugged
d$log_gdp <- log(d$rgdppc_2000)
dd <- d[complete.cases(d$rgdppc_2000), ]
dd_trim <- dd[ , c("log_gdp","rugged","cont_africa")]
head(dd_trim)
## log_gdp rugged cont_africa
## 3 7.492609 0.858 1
## 5 8.216929 3.427 0
## 8 9.933263 0.769 0
## 9 9.407032 0.775 0
## 10 7.792343 2.688 0
## 12 9.212541 0.006 0
set.seed(1234)
In this section of code, we set up the TensorFlow data structures. The first step is to move the data into greta arrays. These data structures behave similarly to R arrays in that they can be manipulated with functions. However, greta doesn’t immediately calculate values for new arrays. It works out the size and shape of the result and creates a place-holder data structure.
#data
g_log_gdp <- as_data(dd_trim$log_gdp)
g_rugged <- as_data(dd_trim$rugged)
g_cont_africa <- as_data(dd_trim$cont_africa)
In this section, we set up the Bayesian model. All parameters need prior probability distributions. Note that the parameters a, bR,bA, bAR, sigma, and mu are all new greta arrays that don’t contain any data. a is 1 x 1 array and mu is a 170 x 1 array with one slot for each observation.
The distribution() function sets up the likelihood function for the model.
# Variables and Priors
a <- normal(0, 100)
bR <- normal(0, 10)
bA <- normal(0, 10)
bAR <- normal(0,10)
sigma <- cauchy(0,2,truncation=c(0,Inf))
a # Look at this greata array
## greta array (variable following a normal distribution)
##
## [,1]
## [1,] ?
# operations
mu <- a + bR*g_rugged + bA*g_cont_africa + bAR*g_rugged*g_cont_africa
dim(mu)
## [1] 170 1
# likelihood
distribution(g_log_gdp) = normal(mu, sigma)
The model() function does all of the work. It fits the model and produces a fairly complicated object organized as three lists that contain, respectively, the R6 class, TensorFlow structures, and the various greta data arrays.
# defining the model
mod <- model(a,bR,bA,bAR,sigma)
str(mod,give.attr=FALSE,max.level=1)
## List of 3
## $ dag :Classes 'dag_class', 'R6' <dag_class>
## Public:
## adjacency_matrix: function ()
## build_dag: function (greta_array_list)
## clone: function (deep = FALSE)
## compile: TRUE
## define_gradients: function ()
## define_joint_density: function ()
## define_tf: function ()
## example_parameters: function (flat = TRUE)
## find_node_neighbours: function ()
## get_tf_names: function (types = NULL)
## gradients: function (adjusted = TRUE)
## initialize: function (target_greta_arrays, tf_float = tf$float32, n_cores = 2L,
## log_density: function (adjusted = TRUE)
## make_names: function ()
## n_cores: 4
## node_list: list
## node_tf_names: variable_1 distribution_1 data_1 data_2 operation_1 oper ...
## node_types: variable distribution data data operation operation oper ...
## parameters_example: list
## send_parameters: function (parameters, flat = TRUE)
## subgraph_membership: function ()
## target_nodes: list
## tf_environment: environment
## tf_float: tensorflow.python.framework.dtypes.DType, python.builtin.object
## tf_name: function (node)
## trace_values: function ()
## $ target_greta_arrays :List of 5
## $ visible_greta_arrays:List of 9
Plotting mod produces the TensorFlow flow diagram that shows the structure of the underlying TensorFlow model, which is simple for this model and easily interpretable.
# plotting
plot(mod)

Next, we use the greta function mcmc() to sample from the posterior distributions defined in the model.
# sampling
draws <- mcmc(mod, n_samples = 1000)
summary(draws)
##
## Iterations = 1:1000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## a 9.2225 0.13721 0.004339 0.004773
## bR -0.2009 0.07486 0.002367 0.002746
## bA -1.9485 0.23033 0.007284 0.004435
## bAR 0.3992 0.13271 0.004197 0.003136
## sigma 0.9527 0.04892 0.001547 0.001744
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## a 8.9575 9.1284 9.2306 9.3183 9.47865
## bR -0.3465 -0.2501 -0.1981 -0.1538 -0.05893
## bA -2.3910 -2.1096 -1.9420 -1.7876 -1.50781
## bAR 0.1408 0.3054 0.3954 0.4844 0.66000
## sigma 0.8616 0.9194 0.9520 0.9845 1.05006
Now that we have the samples of the posterior distributions of the parameters in the model, it is straightforward to examine them. Here, we plot the posterior distribution of the interaction term.
mat <- data.frame(matrix(draws[[1]],ncol=5))
names(mat) <- c("a","bR","bA","bAR","sigma")
#head(mat)
# http://www.cookbook-r.com/Graphs/Plotting_distributions_(ggplot2)/
ggplot(mat, aes(x=bAR)) +
geom_histogram(aes(y=..density..), binwidth=.05, colour="black", fill="white") +
geom_density(alpha=.2, fill="#FF6666")

Finally, we examine the trace plots for the MCMC samples using the greta function mcmc_trace(). The plots for each parameter appear to be stationary (flat, i.e., centered on a constant value) and well-mixed (there is no obvious correlation between points).mcmc_intervals() plots the uncertainty intervals for each parameter computed from posterior draws with all chains merged.
mcmc_trace(draws)

mcmc_intervals(draws)

So there it is - a Bayesian model using Hamiltonian Monte Carlo sampling built in R and evaluated by TensorFlow.
For an expert discussion of the model, have a look at McElreath’s book, described at the link above. For more on greta, see thepackage documentation. And please, do take the time to read about greta’s namesake: Greta Hermann, a remarkable woman - mathematician, philosopher, educator, social activist, and theoretical physicist who found the error in John von Neuman’s “proof” of the “No hidden variables theorem” of Quantum Mechanics.
转自:https://rviews.rstudio.com/2018/04/23/on-first-meeting-greta/
An Introduction to Greta的更多相关文章
- A chatroom for all! Part 1 - Introduction to Node.js(转发)
项目组用到了 Node.js,发现下面这篇文章不错.转发一下.原文地址:<原文>. ------------------------------------------- A chatro ...
- Introduction to graph theory 图论/脑网络基础
Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...
- INTRODUCTION TO BIOINFORMATICS
INTRODUCTION TO BIOINFORMATICS 这套教程源自Youtube,算得上比较完整的生物信息学领域的视频教程,授课内容完整清晰,专题化的讲座形式,细节讲解比国内的京师大 ...
- mongoDB index introduction
索引为mongoDB的查询提供了有效的解决方案,如果没有索引,mongodb必须的扫描文档集中所有记录来match查询条件的记录.然而这些扫描是没有必要,而且每一次操作mongod进程会处理大量的数据 ...
- (翻译)《Hands-on Node.js》—— Introduction
今天开始会和大熊君{{bb}}一起着手翻译node的系列外文书籍,大熊负责翻译<Node.js IN ACTION>一书,而我暂时负责翻译这本<Hands-on Node.js> ...
- Introduction of OpenCascade Foundation Classes
Introduction of OpenCascade Foundation Classes Open CASCADE基础类简介 eryar@163.com 一.简介 1. 基础类概述 Foundat ...
- 000.Introduction to ASP.NET Core--【Asp.net core 介绍】
Introduction to ASP.NET Core Asp.net core 介绍 270 of 282 people found this helpful By Daniel Roth, Ri ...
- Introduction to Microsoft Dynamics 365 licensing
Microsoft Dynamics 365 will be released on November 1. In preparation for that, Scott Guthrie hosted ...
- RabbitMQ消息队列(一): Detailed Introduction 详细介绍
http://blog.csdn.net/anzhsoft/article/details/19563091 RabbitMQ消息队列(一): Detailed Introduction 详细介绍 ...
随机推荐
- omnibus gitlab-ce安装
架构 关闭防火墙 [root@gitlab ~]# systemctl stop firewalld [root@gitlab ~]# systemctl disable firewalld 关闭SE ...
- 如何用js创建表格?
1.用js创建表格 <script> function createTable(){ //创建表格 //创建对象 //window下面的属性方法可以把window去掉或者写上 var ta ...
- pix2pix-tensorflow搭建及其使用
目录 pix2pix-tensorflow搭建过程 1. 环境搭建 2. 环境说明 3. 开始搭建 4. 训练结果说明 5. 数据集 5.1 图片格式说明 5.3 从先用图片创建图像对 5.4 如何进 ...
- Mac下安装hexo Error: Cannot find module './build/Release/DTraceProviderBindings 解决
参考: Github:Mac 下已经装了hexo,仍旧报错 官方文档 $ npm install hexo --no-optional if it doesn't work try $ npm uni ...
- .Net web 关于表单标题
今天跟以前同事学到一个好东西,就是后台web界面表单标题展示的一个方法,新学到的一个方法...赶紧分享一下 在model 属性上加 [DisplayName("标题"), Req ...
- UVa 10891 Sum游戏
https://vjudge.net/problem/UVA-10891 题意: 有一个长度为n的整数序列,两个游戏者A和B轮流取数,A先取.每次玩家只能从左端或者右端取任意数量个数,但不能两端都取. ...
- php 获取某个日期n天之后的日期
<?php $date=date_create("2013-03-15"); date_add($date,date_interval_create_from_date_st ...
- git 设置 代理服务器
git config --global http.proxy http://proxyuser:proxypwd@proxy.server.com:8080 git config --global h ...
- JAVA消息 JMS 很重要
首先大致讲一下,java 消息模块 消息,个人理解分为两种:1.同步消息(RPC调用) 2.异步消息(本篇讲解部分) 一.同步消息java提供了多种方案: 最新比较常用的方式就是spring Http ...
- 获取文本中所有的<img>标签的位置,获取所有img标签的src
public static int[] GetImagePos(string str) { str = str.Replace("$", " "); str = ...