I was surprised by greta. I had assumed that the tensorflow and reticulate packages would eventually enable R developers to look beyond deep learning applications and exploit the TensorFlow platform to create all manner of production-grade statistical applications. But I wasn’t thinking Bayesian. After all, Stan is probably everything a Bayesian modeler could want. Stan is a powerful, production-level probability distribution modeling engine with a slick R interface, deep documentation, and a dedicated development team.

But greta lets users write TensorFlow-based Bayesian models directly in R! What could be more charming? greta removes the barrier of learning an intermediate modeling language while still promising to deliver high-performance MCMC models that run anywhere TensorFlow can go.

In this post, I’ll introduce you to greta with a simple model used by Richard McElreath in section 8.3 of his iconoclastic book:Statistical Rethinking: A Bayesian Course with Examples in R and Stan. This model seeks to explain the log of a country’s GDP based on a measure of terrain ruggedness while controlling for whether or not the country is in Africa. I am going to use it just to illustrate MCMC sampling with greta. The extended example in McElreath’s book, however, is a meditation on the subtleties of modeling interactions, and is well worth studying.

First, we load the required packages and fetch the data. DiagrammeR is for plotting the TensorFlow flow diagram of the model, andbayesplot is used to plot trace diagrams of the Markov chains. The rugged data set which provides 52 variables for 234 is fairly interesting, but we will use a trimmed-down data set with only 170 counties and three variables.

library(rethinking)
library(greta)
library(DiagrammeR)
library(bayesplot)
library(ggplot2) # Example from section 8.3 Statistical Rethinking
data(rugged)
d <- rugged
d$log_gdp <- log(d$rgdppc_2000)
dd <- d[complete.cases(d$rgdppc_2000), ]
dd_trim <- dd[ , c("log_gdp","rugged","cont_africa")]
head(dd_trim)
##     log_gdp rugged cont_africa
## 3 7.492609 0.858 1
## 5 8.216929 3.427 0
## 8 9.933263 0.769 0
## 9 9.407032 0.775 0
## 10 7.792343 2.688 0
## 12 9.212541 0.006 0
set.seed(1234)

In this section of code, we set up the TensorFlow data structures. The first step is to move the data into greta arrays. These data structures behave similarly to R arrays in that they can be manipulated with functions. However, greta doesn’t immediately calculate values for new arrays. It works out the size and shape of the result and creates a place-holder data structure.

#data
g_log_gdp <- as_data(dd_trim$log_gdp)
g_rugged <- as_data(dd_trim$rugged)
g_cont_africa <- as_data(dd_trim$cont_africa)

In this section, we set up the Bayesian model. All parameters need prior probability distributions. Note that the parameters abR,bAbARsigma, and mu are all new greta arrays that don’t contain any data. a is 1 x 1 array and mu is a 170 x 1 array with one slot for each observation.

The distribution() function sets up the likelihood function for the model.

# Variables and Priors

a <- normal(0, 100)
bR <- normal(0, 10)
bA <- normal(0, 10)
bAR <- normal(0,10)
sigma <- cauchy(0,2,truncation=c(0,Inf)) a # Look at this greata array
## greta array (variable following a normal distribution)
##
## [,1]
## [1,] ?
# operations
mu <- a + bR*g_rugged + bA*g_cont_africa + bAR*g_rugged*g_cont_africa dim(mu)
## [1] 170   1
# likelihood
distribution(g_log_gdp) = normal(mu, sigma)

The model() function does all of the work. It fits the model and produces a fairly complicated object organized as three lists that contain, respectively, the R6 class, TensorFlow structures, and the various greta data arrays.

# defining the model
mod <- model(a,bR,bA,bAR,sigma) str(mod,give.attr=FALSE,max.level=1)
## List of 3
## $ dag :Classes 'dag_class', 'R6' <dag_class>
## Public:
## adjacency_matrix: function ()
## build_dag: function (greta_array_list)
## clone: function (deep = FALSE)
## compile: TRUE
## define_gradients: function ()
## define_joint_density: function ()
## define_tf: function ()
## example_parameters: function (flat = TRUE)
## find_node_neighbours: function ()
## get_tf_names: function (types = NULL)
## gradients: function (adjusted = TRUE)
## initialize: function (target_greta_arrays, tf_float = tf$float32, n_cores = 2L,
## log_density: function (adjusted = TRUE)
## make_names: function ()
## n_cores: 4
## node_list: list
## node_tf_names: variable_1 distribution_1 data_1 data_2 operation_1 oper ...
## node_types: variable distribution data data operation operation oper ...
## parameters_example: list
## send_parameters: function (parameters, flat = TRUE)
## subgraph_membership: function ()
## target_nodes: list
## tf_environment: environment
## tf_float: tensorflow.python.framework.dtypes.DType, python.builtin.object
## tf_name: function (node)
## trace_values: function ()
## $ target_greta_arrays :List of 5
## $ visible_greta_arrays:List of 9

Plotting mod produces the TensorFlow flow diagram that shows the structure of the underlying TensorFlow model, which is simple for this model and easily interpretable.

# plotting
plot(mod)

Next, we use the greta function mcmc() to sample from the posterior distributions defined in the model.

# sampling
draws <- mcmc(mod, n_samples = 1000)
summary(draws)
##
## Iterations = 1:1000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## a 9.2225 0.13721 0.004339 0.004773
## bR -0.2009 0.07486 0.002367 0.002746
## bA -1.9485 0.23033 0.007284 0.004435
## bAR 0.3992 0.13271 0.004197 0.003136
## sigma 0.9527 0.04892 0.001547 0.001744
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## a 8.9575 9.1284 9.2306 9.3183 9.47865
## bR -0.3465 -0.2501 -0.1981 -0.1538 -0.05893
## bA -2.3910 -2.1096 -1.9420 -1.7876 -1.50781
## bAR 0.1408 0.3054 0.3954 0.4844 0.66000
## sigma 0.8616 0.9194 0.9520 0.9845 1.05006

Now that we have the samples of the posterior distributions of the parameters in the model, it is straightforward to examine them. Here, we plot the posterior distribution of the interaction term.

mat <- data.frame(matrix(draws[[1]],ncol=5))
names(mat) <- c("a","bR","bA","bAR","sigma")
#head(mat)
# http://www.cookbook-r.com/Graphs/Plotting_distributions_(ggplot2)/
ggplot(mat, aes(x=bAR)) +
geom_histogram(aes(y=..density..), binwidth=.05, colour="black", fill="white") +
geom_density(alpha=.2, fill="#FF6666")

Finally, we examine the trace plots for the MCMC samples using the greta function mcmc_trace(). The plots for each parameter appear to be stationary (flat, i.e., centered on a constant value) and well-mixed (there is no obvious correlation between points).mcmc_intervals() plots the uncertainty intervals for each parameter computed from posterior draws with all chains merged.

mcmc_trace(draws)

mcmc_intervals(draws)

So there it is - a Bayesian model using Hamiltonian Monte Carlo sampling built in R and evaluated by TensorFlow.

For an expert discussion of the model, have a look at McElreath’s book, described at the link above. For more on greta, see thepackage documentation. And please, do take the time to read about greta’s namesake: Greta Hermann, a remarkable woman - mathematician, philosopher, educator, social activist, and theoretical physicist who found the error in John von Neuman’s “proof” of the “No hidden variables theorem” of Quantum Mechanics.

转自:https://rviews.rstudio.com/2018/04/23/on-first-meeting-greta/

An Introduction to Greta的更多相关文章

  1. A chatroom for all! Part 1 - Introduction to Node.js(转发)

    项目组用到了 Node.js,发现下面这篇文章不错.转发一下.原文地址:<原文>. ------------------------------------------- A chatro ...

  2. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  3. INTRODUCTION TO BIOINFORMATICS

    INTRODUCTION TO BIOINFORMATICS      这套教程源自Youtube,算得上比较完整的生物信息学领域的视频教程,授课内容完整清晰,专题化的讲座形式,细节讲解比国内的京师大 ...

  4. mongoDB index introduction

    索引为mongoDB的查询提供了有效的解决方案,如果没有索引,mongodb必须的扫描文档集中所有记录来match查询条件的记录.然而这些扫描是没有必要,而且每一次操作mongod进程会处理大量的数据 ...

  5. (翻译)《Hands-on Node.js》—— Introduction

    今天开始会和大熊君{{bb}}一起着手翻译node的系列外文书籍,大熊负责翻译<Node.js IN ACTION>一书,而我暂时负责翻译这本<Hands-on Node.js> ...

  6. Introduction of OpenCascade Foundation Classes

    Introduction of OpenCascade Foundation Classes Open CASCADE基础类简介 eryar@163.com 一.简介 1. 基础类概述 Foundat ...

  7. 000.Introduction to ASP.NET Core--【Asp.net core 介绍】

    Introduction to ASP.NET Core Asp.net core 介绍 270 of 282 people found this helpful By Daniel Roth, Ri ...

  8. Introduction to Microsoft Dynamics 365 licensing

    Microsoft Dynamics 365 will be released on November 1. In preparation for that, Scott Guthrie hosted ...

  9. RabbitMQ消息队列(一): Detailed Introduction 详细介绍

     http://blog.csdn.net/anzhsoft/article/details/19563091 RabbitMQ消息队列(一): Detailed Introduction 详细介绍 ...

随机推荐

  1. 20145315 《Java程序设计》第五周学习总结

    20145315 <Java程序设计>第五周学习总结 教材学习内容总结 第八章 8.1语法与继承架构 8.1.1使用try,catch 所有的错误都会被打包为对象,使用try,catch可 ...

  2. iOS动画进阶 - 手摸手教你写ShineButton动画

    移动端访问不佳,请访问我的个人博客 前段时间在github上看见一个非常nice的动画效果,可惜是安卓的,想着用swift写一个iOS版的,下下来源代码研究了一下,下面是我写代码的心路历程 先上图和d ...

  3. [转] VR-FORCES 介绍

    转自:https://sanwen8.cn/p/1e6GQeK.html 今天给各位介绍的仿真平台是VR-Forces.VR-Forces是新加坡公司MAK的产品,前身是美国公司.在仿真平台领域里面, ...

  4. android:点击popupwindow以外区域 popupwindow自动消失

    方法一(这种方法可以处理popupwindows dimiss的时候一些其他的操作,比如让其他控件的隐藏,消失等): 代码如下popupWindow.setFocusable(false);//foc ...

  5. [html5]HTML5中<section>和<article>的区别

    一.section元素 从字面理解就是区块.部分的意思,相对于article元素更加广泛,每个区块都可以使用,比如页面里的导航菜单.文章正文.文章的评论等. 1.section元素用于对网站或应用程序 ...

  6. Java IO流-标准输入输出流

    2017-11-05 19:13:21 标准输入输出流:System类中的两个成员变量. 标准输入流(public static final InputStream in):“标准”输入流.此流已打开 ...

  7. 【Android】冷门常用 ADB

    清除应用缓存adb shell pm clear 包名 获取手机中安装的包名,加上部分包名可以做筛选 adb shell pm list package adb shell pm list packa ...

  8. 缓存cache(5.2新:redis): gem faker (6600✨) 命令行工具curl(系统内置,可在git上看到文档)

    ⚠️本章节记录缓存的一些方法的用法案例,配合这篇博客一起阅读:https://i.cnblogs.com/EditPosts.aspx?postid=8776632  前置种子 https://git ...

  9. HDU 2276 矩阵快速幂

    Kiki & Little Kiki 2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java ...

  10. LeetCode 40

    // 既然不能重复利用,就在递归中选择下一个数,不能重复的话,就用setclass Solution { public: vector<vector<int>> combina ...