I was surprised by greta. I had assumed that the tensorflow and reticulate packages would eventually enable R developers to look beyond deep learning applications and exploit the TensorFlow platform to create all manner of production-grade statistical applications. But I wasn’t thinking Bayesian. After all, Stan is probably everything a Bayesian modeler could want. Stan is a powerful, production-level probability distribution modeling engine with a slick R interface, deep documentation, and a dedicated development team.

But greta lets users write TensorFlow-based Bayesian models directly in R! What could be more charming? greta removes the barrier of learning an intermediate modeling language while still promising to deliver high-performance MCMC models that run anywhere TensorFlow can go.

In this post, I’ll introduce you to greta with a simple model used by Richard McElreath in section 8.3 of his iconoclastic book:Statistical Rethinking: A Bayesian Course with Examples in R and Stan. This model seeks to explain the log of a country’s GDP based on a measure of terrain ruggedness while controlling for whether or not the country is in Africa. I am going to use it just to illustrate MCMC sampling with greta. The extended example in McElreath’s book, however, is a meditation on the subtleties of modeling interactions, and is well worth studying.

First, we load the required packages and fetch the data. DiagrammeR is for plotting the TensorFlow flow diagram of the model, andbayesplot is used to plot trace diagrams of the Markov chains. The rugged data set which provides 52 variables for 234 is fairly interesting, but we will use a trimmed-down data set with only 170 counties and three variables.

library(rethinking)
library(greta)
library(DiagrammeR)
library(bayesplot)
library(ggplot2) # Example from section 8.3 Statistical Rethinking
data(rugged)
d <- rugged
d$log_gdp <- log(d$rgdppc_2000)
dd <- d[complete.cases(d$rgdppc_2000), ]
dd_trim <- dd[ , c("log_gdp","rugged","cont_africa")]
head(dd_trim)
##     log_gdp rugged cont_africa
## 3 7.492609 0.858 1
## 5 8.216929 3.427 0
## 8 9.933263 0.769 0
## 9 9.407032 0.775 0
## 10 7.792343 2.688 0
## 12 9.212541 0.006 0
set.seed(1234)

In this section of code, we set up the TensorFlow data structures. The first step is to move the data into greta arrays. These data structures behave similarly to R arrays in that they can be manipulated with functions. However, greta doesn’t immediately calculate values for new arrays. It works out the size and shape of the result and creates a place-holder data structure.

#data
g_log_gdp <- as_data(dd_trim$log_gdp)
g_rugged <- as_data(dd_trim$rugged)
g_cont_africa <- as_data(dd_trim$cont_africa)

In this section, we set up the Bayesian model. All parameters need prior probability distributions. Note that the parameters abR,bAbARsigma, and mu are all new greta arrays that don’t contain any data. a is 1 x 1 array and mu is a 170 x 1 array with one slot for each observation.

The distribution() function sets up the likelihood function for the model.

# Variables and Priors

a <- normal(0, 100)
bR <- normal(0, 10)
bA <- normal(0, 10)
bAR <- normal(0,10)
sigma <- cauchy(0,2,truncation=c(0,Inf)) a # Look at this greata array
## greta array (variable following a normal distribution)
##
## [,1]
## [1,] ?
# operations
mu <- a + bR*g_rugged + bA*g_cont_africa + bAR*g_rugged*g_cont_africa dim(mu)
## [1] 170   1
# likelihood
distribution(g_log_gdp) = normal(mu, sigma)

The model() function does all of the work. It fits the model and produces a fairly complicated object organized as three lists that contain, respectively, the R6 class, TensorFlow structures, and the various greta data arrays.

# defining the model
mod <- model(a,bR,bA,bAR,sigma) str(mod,give.attr=FALSE,max.level=1)
## List of 3
## $ dag :Classes 'dag_class', 'R6' <dag_class>
## Public:
## adjacency_matrix: function ()
## build_dag: function (greta_array_list)
## clone: function (deep = FALSE)
## compile: TRUE
## define_gradients: function ()
## define_joint_density: function ()
## define_tf: function ()
## example_parameters: function (flat = TRUE)
## find_node_neighbours: function ()
## get_tf_names: function (types = NULL)
## gradients: function (adjusted = TRUE)
## initialize: function (target_greta_arrays, tf_float = tf$float32, n_cores = 2L,
## log_density: function (adjusted = TRUE)
## make_names: function ()
## n_cores: 4
## node_list: list
## node_tf_names: variable_1 distribution_1 data_1 data_2 operation_1 oper ...
## node_types: variable distribution data data operation operation oper ...
## parameters_example: list
## send_parameters: function (parameters, flat = TRUE)
## subgraph_membership: function ()
## target_nodes: list
## tf_environment: environment
## tf_float: tensorflow.python.framework.dtypes.DType, python.builtin.object
## tf_name: function (node)
## trace_values: function ()
## $ target_greta_arrays :List of 5
## $ visible_greta_arrays:List of 9

Plotting mod produces the TensorFlow flow diagram that shows the structure of the underlying TensorFlow model, which is simple for this model and easily interpretable.

# plotting
plot(mod)

Next, we use the greta function mcmc() to sample from the posterior distributions defined in the model.

# sampling
draws <- mcmc(mod, n_samples = 1000)
summary(draws)
##
## Iterations = 1:1000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## a 9.2225 0.13721 0.004339 0.004773
## bR -0.2009 0.07486 0.002367 0.002746
## bA -1.9485 0.23033 0.007284 0.004435
## bAR 0.3992 0.13271 0.004197 0.003136
## sigma 0.9527 0.04892 0.001547 0.001744
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## a 8.9575 9.1284 9.2306 9.3183 9.47865
## bR -0.3465 -0.2501 -0.1981 -0.1538 -0.05893
## bA -2.3910 -2.1096 -1.9420 -1.7876 -1.50781
## bAR 0.1408 0.3054 0.3954 0.4844 0.66000
## sigma 0.8616 0.9194 0.9520 0.9845 1.05006

Now that we have the samples of the posterior distributions of the parameters in the model, it is straightforward to examine them. Here, we plot the posterior distribution of the interaction term.

mat <- data.frame(matrix(draws[[1]],ncol=5))
names(mat) <- c("a","bR","bA","bAR","sigma")
#head(mat)
# http://www.cookbook-r.com/Graphs/Plotting_distributions_(ggplot2)/
ggplot(mat, aes(x=bAR)) +
geom_histogram(aes(y=..density..), binwidth=.05, colour="black", fill="white") +
geom_density(alpha=.2, fill="#FF6666")

Finally, we examine the trace plots for the MCMC samples using the greta function mcmc_trace(). The plots for each parameter appear to be stationary (flat, i.e., centered on a constant value) and well-mixed (there is no obvious correlation between points).mcmc_intervals() plots the uncertainty intervals for each parameter computed from posterior draws with all chains merged.

mcmc_trace(draws)

mcmc_intervals(draws)

So there it is - a Bayesian model using Hamiltonian Monte Carlo sampling built in R and evaluated by TensorFlow.

For an expert discussion of the model, have a look at McElreath’s book, described at the link above. For more on greta, see thepackage documentation. And please, do take the time to read about greta’s namesake: Greta Hermann, a remarkable woman - mathematician, philosopher, educator, social activist, and theoretical physicist who found the error in John von Neuman’s “proof” of the “No hidden variables theorem” of Quantum Mechanics.

转自:https://rviews.rstudio.com/2018/04/23/on-first-meeting-greta/

An Introduction to Greta的更多相关文章

  1. A chatroom for all! Part 1 - Introduction to Node.js(转发)

    项目组用到了 Node.js,发现下面这篇文章不错.转发一下.原文地址:<原文>. ------------------------------------------- A chatro ...

  2. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  3. INTRODUCTION TO BIOINFORMATICS

    INTRODUCTION TO BIOINFORMATICS      这套教程源自Youtube,算得上比较完整的生物信息学领域的视频教程,授课内容完整清晰,专题化的讲座形式,细节讲解比国内的京师大 ...

  4. mongoDB index introduction

    索引为mongoDB的查询提供了有效的解决方案,如果没有索引,mongodb必须的扫描文档集中所有记录来match查询条件的记录.然而这些扫描是没有必要,而且每一次操作mongod进程会处理大量的数据 ...

  5. (翻译)《Hands-on Node.js》—— Introduction

    今天开始会和大熊君{{bb}}一起着手翻译node的系列外文书籍,大熊负责翻译<Node.js IN ACTION>一书,而我暂时负责翻译这本<Hands-on Node.js> ...

  6. Introduction of OpenCascade Foundation Classes

    Introduction of OpenCascade Foundation Classes Open CASCADE基础类简介 eryar@163.com 一.简介 1. 基础类概述 Foundat ...

  7. 000.Introduction to ASP.NET Core--【Asp.net core 介绍】

    Introduction to ASP.NET Core Asp.net core 介绍 270 of 282 people found this helpful By Daniel Roth, Ri ...

  8. Introduction to Microsoft Dynamics 365 licensing

    Microsoft Dynamics 365 will be released on November 1. In preparation for that, Scott Guthrie hosted ...

  9. RabbitMQ消息队列(一): Detailed Introduction 详细介绍

     http://blog.csdn.net/anzhsoft/article/details/19563091 RabbitMQ消息队列(一): Detailed Introduction 详细介绍 ...

随机推荐

  1. 20159212杨翔实验一(熟悉Java开发环境)实验报告

     实验内容 1.使用JDK编译.运行简单的Java程序: 2.使用Eclipse 编辑.编译.运行.调试Java程序. 实验步骤与体会 一.命令行下Java程序开发 1.操作过程     在虚拟环境中 ...

  2. angular6开发不完全笔记(一) -- ng-cli

    新建项目 请在终端/控制台窗口中运行 ng -v 命令. 确定您已安装@angular/cli if没有执行 npm install -g @angular/cli 全局安装 Angular CLI. ...

  3. libcurl开源库在Win7 + VS2012环境下编译、配置详解 以及下载文件并显示下载进度 demo(转载)

    转载:http://blog.csdn.net/fengshuiyue/article/details/39530093(基本教程) 转载:https://my.oschina.net/u/14207 ...

  4. ubuntu18.04下监视显卡的运行情况【学习笔记】

    作者:庄泽彬(欢迎转载,请注明作者) 说明:使用watch命令监听显卡的使用 安装完显卡驱动之后系统会生成nvidia-smi 这个工具,我们只需要配合watch命令就可以周期性的查看显卡的信息,-n ...

  5. springboot中websoket的使用

    知识点:springboot项目中,websoket实时推送技术的介绍与使用      一.双向通信 http协议通信只能由客户端发起请求,服务端返回查询结果,如果我们想定时获取服务端的状态变化,相对 ...

  6. SDN前瞻 网络的前世今生

    本文基于SDN导论的视频而成:SDN导论 目前网络层面流行的技术概念:虚拟中心:公有云私有云:数据中心等等. SDN主要的模拟器:Mininet OpenDaylight(Cisco) ONOS(AT ...

  7. lapply

    正如前面展示的,lapply( )函数接收一个向量和一个函数作为输入参数.它将这个函数应用到向量中的每个元素,再将结果以列表的形式返回.当每次迭代都是相互独立时,这个函数就非常好用.因为在这种情况下, ...

  8. thinkphp3.2验证码在服务器上显示不出来

    ThinPHP3.2 验证码 在本地服务器访问可以显示,上传到服务器就不能访问了 /**** * 验证码 */ function code() { $config=array( 'fontSize'= ...

  9. 基于Oracle的SQL优化(崔华著)-学习笔记

    201704171025 01. 列rows记录的就是执行计划中每一个执行步骤所对应的Cardinality的值 列Cost(%CPU)记录的就是执行计划中的每一个执行步骤对应的成本 02. Comp ...

  10. curl使用记录

    $header = array("Connection: Keep-Alive", "Accept: text/html,application/xhtml+xml,ap ...