https://vjudge.net/problem/POJ-2096

题意

一个软件有s个子系统,会产生n种bug。某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中。求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望。需要注意的是:bug的数量是无穷大的,所以发现一个bug,出现在某个子系统的概率是1/s,属于某种类型的概率是1/n。

分析

dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
dp[i][j]状态可以转化成以下四种:
dp[i][j] 发现一个bug属于已经找到的i种bug和j个子系统中
dp[i+1][j] 发现一个bug属于新的一种bug,但属于已经找到的j种子系统
dp[i][j+1] 发现一个bug属于已经找到的i种bug,但属于新的子系统
dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统
以上四种的概率分别为:
p1 = i*j / (n*s)
p2 = (n-i)*j / (n*s)
p3 = i*(s-j) / (n*s)
p4 = (n-i)*(s-j) / (n*s)
又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
所以:dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1;
整理得:dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 )= ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j )

需要对式子化简一下,不然精度似乎不够。。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
#define pii pair<int, int>
#define IOS ios::sync_with_stdio(0);cin.tie(0);
#define random(a, b) rand()*rand()%(b-a+1)+a
#define pi acos(-1.0)
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
const int maxn = 1e5+;
const int maxm = 1e5+;
const ll mod = 1e9+;
double dp[][];
int main(){
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
int n,s;
scanf("%d%d",&n,&s);
dp[n][s]=0.0;
int ns=n*s;
for(int i=n;i>=;i--){
for(int j=s;j>=;j--){
if(i==n&&j==s) continue;
// dp[i][j]=dp[i][j]*(1.0*i*j/(n*s))+dp[i+1][j]*(1.0*(n-i)*j/(n*s))
// +dp[i][j+1]*(1.0*i*(s-j)/(n*s))+dp[i+1][j+1]*(1.0*(n-i)*(s-j)/(n*s))+1;
dp[i][j] = ( ns + (n-i)*j*dp[i+][j] + i*(s-j)*dp[i][j+] + (n-i)*(s-j)*dp[i+][j+] )/( ns - i*j );
}
}
printf("%.4f\n",dp[][]);
return ;
}

POJ - 2096 Collecting Bugs(概率dp)的更多相关文章

  1. POJ 2096 Collecting Bugs (概率DP,求期望)

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

  2. poj 2096 Collecting Bugs 概率dp 入门经典 难度:1

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 2745   Accepted: 1345 ...

  3. poj 2096 Collecting Bugs (概率dp 天数期望)

    题目链接 题意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcom ...

  4. Poj 2096 Collecting Bugs (概率DP求期望)

    C - Collecting Bugs Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64 ...

  5. POJ 2096 Collecting Bugs (概率DP)

    题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...

  6. POJ 2096 Collecting Bugs 期望dp

    题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...

  7. poj 2096 Collecting Bugs - 概率与期望 - 动态规划

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

  8. poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 3523   Accepted: 1740 ...

  9. poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP

    poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...

  10. POJ 2096 Collecting Bugs

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 1716   Accepted: 783 C ...

随机推荐

  1. 【NOI2003——搜索+二分图匹配优化】

    A 文本编辑器 无旋treap真好看 B 木棒游戏 暴力神仙题 C 数据生成器 树的直径两端点为Y, Z D 智破连环阵 搜索+二分图匹配优化 第一次写欸 列一下 void dfs (int y,in ...

  2. 【刷题】LOJ 556 「Antileaf's Round」咱们去烧菜吧

    题目描述 你有 \(m\) 种物品,第 \(i\) 种物品的大小为 \(a_i\) ​,数量为 \(b_i\)​( \(b_i=0\) 表示有无限个). 你还有 \(n\) 个背包,体积分别为 \(1 ...

  3. Hdoj 1232.畅通工程 题解

    Problem Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府"畅通工程"的目标是使全省任何两个城镇间都可以实现交通 ...

  4. [JSOI2008]Blue Mary的职员分配

    由于Blue Mary呕心沥血的管理,Blue Mary的网络公司蒸蒸日上.现在一共拥有了n名职员,可惜没有任何的金钱和声誉.平均每名每天职员都可以给公司带来x单位金钱或者y单位声誉(名利不能双全). ...

  5. OO第二阶段纪实

    $ 0 写在前面 往往是那些令人格外痛苦的经历,会带给人以最快的成长.转眼间,半个学期的时间过去了,时间匆匆,不管之前对这几次充满了怎样的畏惧,在身边朋友们的帮助和努力下,我也渐渐度过了一个个难关.回 ...

  6. nodejs的某些api~(一)node的流2

    可写流writablewritable.write(chunk, [encoding], [callback])chunk {String | Buffer} 要写入的数据encoding {Stri ...

  7. 纪中2018暑假培训day7提高b组改题记录

    由于今天太颓了,所以没有解释 t1: Description 码零鼠是一只很喜欢mx数学的神犇,上面那个不是ta本人的样子.这天,ta在研究一个神奇的数列,这个数列是这样的:a0 = 1an = ai ...

  8. 【洛谷P3455】ZAP-Queries

    题目大意:求 \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[gcd(i,j)=c]\] 题解:学会了狄利克雷卷积. \[\epsilon=\mu \ast 1\] ...

  9. spring boot下MultipartHttpServletRequest如何提高上传文件大小的默认值

    前言: 上传下载功能算是一个非常常见的功能,如果使用MultipartHttpServletRequest来做上传功能. 不配置上传大小的话,默认是2M.在有些场景,这个肯定不能满足条件. 上传代码: ...

  10. 使用ZXing.Net生成与识别二维码(QR Code)

    Google ZXing是目前一个常用的基于Java实现的多种格式的1D/2D条码图像处理库,出于其开源的特性其现在已有多平台版本.比如今天要用到的ZXing.Net就是针对微软.Net平台的版本.使 ...