https://vjudge.net/problem/POJ-2096

题意

一个软件有s个子系统,会产生n种bug。某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中。求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望。需要注意的是:bug的数量是无穷大的,所以发现一个bug,出现在某个子系统的概率是1/s,属于某种类型的概率是1/n。

分析

dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
dp[i][j]状态可以转化成以下四种:
dp[i][j] 发现一个bug属于已经找到的i种bug和j个子系统中
dp[i+1][j] 发现一个bug属于新的一种bug,但属于已经找到的j种子系统
dp[i][j+1] 发现一个bug属于已经找到的i种bug,但属于新的子系统
dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统
以上四种的概率分别为:
p1 = i*j / (n*s)
p2 = (n-i)*j / (n*s)
p3 = i*(s-j) / (n*s)
p4 = (n-i)*(s-j) / (n*s)
又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
所以:dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1;
整理得:dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 )= ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j )

需要对式子化简一下,不然精度似乎不够。。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
#define pii pair<int, int>
#define IOS ios::sync_with_stdio(0);cin.tie(0);
#define random(a, b) rand()*rand()%(b-a+1)+a
#define pi acos(-1.0)
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
const int maxn = 1e5+;
const int maxm = 1e5+;
const ll mod = 1e9+;
double dp[][];
int main(){
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
int n,s;
scanf("%d%d",&n,&s);
dp[n][s]=0.0;
int ns=n*s;
for(int i=n;i>=;i--){
for(int j=s;j>=;j--){
if(i==n&&j==s) continue;
// dp[i][j]=dp[i][j]*(1.0*i*j/(n*s))+dp[i+1][j]*(1.0*(n-i)*j/(n*s))
// +dp[i][j+1]*(1.0*i*(s-j)/(n*s))+dp[i+1][j+1]*(1.0*(n-i)*(s-j)/(n*s))+1;
dp[i][j] = ( ns + (n-i)*j*dp[i+][j] + i*(s-j)*dp[i][j+] + (n-i)*(s-j)*dp[i+][j+] )/( ns - i*j );
}
}
printf("%.4f\n",dp[][]);
return ;
}

POJ - 2096 Collecting Bugs(概率dp)的更多相关文章

  1. POJ 2096 Collecting Bugs (概率DP,求期望)

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

  2. poj 2096 Collecting Bugs 概率dp 入门经典 难度:1

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 2745   Accepted: 1345 ...

  3. poj 2096 Collecting Bugs (概率dp 天数期望)

    题目链接 题意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcom ...

  4. Poj 2096 Collecting Bugs (概率DP求期望)

    C - Collecting Bugs Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64 ...

  5. POJ 2096 Collecting Bugs (概率DP)

    题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...

  6. POJ 2096 Collecting Bugs 期望dp

    题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...

  7. poj 2096 Collecting Bugs - 概率与期望 - 动态规划

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

  8. poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 3523   Accepted: 1740 ...

  9. poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP

    poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...

  10. POJ 2096 Collecting Bugs

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 1716   Accepted: 783 C ...

随机推荐

  1. 登录Linux服务器显示IP和自定义备注

    默认搭建好的Linux服务器,使用Xshell登录的窗口如下所示: 可根据需要执行如上代码,再重新登录服务器,效果如下图所示: 代码片段:echo "export PS1='\u@\[\e[ ...

  2. html图像、绝对路径和相对路径,链接

    html图像 <img>标签可以在网页上插入一张图片,它是独立使用的标签,通过"src"属性定义图片的地址,通过"alt"属性定义图片加载失败时显示 ...

  3. 牛客小白月赛12 I (tarjan求割边)

    题目链接:https://ac.nowcoder.com/acm/contest/392/I 题目大意:一个含有n个顶点m条边的图,求经过所有顶点必须要经过的边数. 例: 输入: 5 51 22 33 ...

  4. 分考场(无向图着色问题)(dfs回溯)

    问题描述 n个人参加某项特殊考试. 为了公平,要求任何两个认识的人不能分在同一个考场. 求是少需要分几个考场才能满足条件. 输入格式 第一行,一个整数n(1<n<100),表示参加考试的人 ...

  5. ACM-ICPC 2015 ChangChun

    比赛链接 :点击这里 大概会写 F G J L 吧 F 给你一个序列 最多删除一个数使他构成 最长不上升或者不下降子序列 这题不会不会on的算法只能 t*n*logn 了 还是压常过 求两次 LIS ...

  6. 【模板】多项式乘法(FFT)

    题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系 ...

  7. flask 连接MogoDB数据库

    # -*- encoding: utf-8 -*- from flask import Flask,request,jsonify,render_template #导入pymongo来连接mongo ...

  8. 怎么自行HTTP的POST包头,需要使用json

    http://bbs.csdn.net/topics/390674431 不理解你为什么这么传 post的格式如下:POST / HTTP/1.1Host: www.wrox.comUser-Agen ...

  9. 外显子分析思路总结(Exome Sequencing Analysis review)

    趁着周末,大好的日子,总结了一下外显子分析的思路(套路)

  10. linux系统调用之网络管理2

    socketcall socket系统调用 socket 建立socket bind 绑定socket到端口 connect 连接远程主机 accept 响应socket连接请求 send 通过soc ...