POJ - 2096 Collecting Bugs(概率dp)
https://vjudge.net/problem/POJ-2096
题意
一个软件有s个子系统,会产生n种bug。某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中。求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望。需要注意的是:bug的数量是无穷大的,所以发现一个bug,出现在某个子系统的概率是1/s,属于某种类型的概率是1/n。
分析
dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
dp[i][j]状态可以转化成以下四种:
dp[i][j] 发现一个bug属于已经找到的i种bug和j个子系统中
dp[i+1][j] 发现一个bug属于新的一种bug,但属于已经找到的j种子系统
dp[i][j+1] 发现一个bug属于已经找到的i种bug,但属于新的子系统
dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统
以上四种的概率分别为:
p1 = i*j / (n*s)
p2 = (n-i)*j / (n*s)
p3 = i*(s-j) / (n*s)
p4 = (n-i)*(s-j) / (n*s)
又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
所以:dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1;
整理得:dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 )= ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j )
需要对式子化简一下,不然精度似乎不够。。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
#define pii pair<int, int>
#define IOS ios::sync_with_stdio(0);cin.tie(0);
#define random(a, b) rand()*rand()%(b-a+1)+a
#define pi acos(-1.0)
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
const int maxn = 1e5+;
const int maxm = 1e5+;
const ll mod = 1e9+;
double dp[][];
int main(){
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
int n,s;
scanf("%d%d",&n,&s);
dp[n][s]=0.0;
int ns=n*s;
for(int i=n;i>=;i--){
for(int j=s;j>=;j--){
if(i==n&&j==s) continue;
// dp[i][j]=dp[i][j]*(1.0*i*j/(n*s))+dp[i+1][j]*(1.0*(n-i)*j/(n*s))
// +dp[i][j+1]*(1.0*i*(s-j)/(n*s))+dp[i+1][j+1]*(1.0*(n-i)*(s-j)/(n*s))+1;
dp[i][j] = ( ns + (n-i)*j*dp[i+][j] + i*(s-j)*dp[i][j+] + (n-i)*(s-j)*dp[i+][j+] )/( ns - i*j );
}
}
printf("%.4f\n",dp[][]);
return ;
}
POJ - 2096 Collecting Bugs(概率dp)的更多相关文章
- POJ 2096 Collecting Bugs (概率DP,求期望)
Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...
- poj 2096 Collecting Bugs 概率dp 入门经典 难度:1
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 2745 Accepted: 1345 ...
- poj 2096 Collecting Bugs (概率dp 天数期望)
题目链接 题意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcom ...
- Poj 2096 Collecting Bugs (概率DP求期望)
C - Collecting Bugs Time Limit:10000MS Memory Limit:64000KB 64bit IO Format:%I64d & %I64 ...
- POJ 2096 Collecting Bugs (概率DP)
题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...
- POJ 2096 Collecting Bugs 期望dp
题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...
- poj 2096 Collecting Bugs - 概率与期望 - 动态规划
Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...
- poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 3523 Accepted: 1740 ...
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- POJ 2096 Collecting Bugs
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 1716 Accepted: 783 C ...
随机推荐
- 【NOI2003——搜索+二分图匹配优化】
A 文本编辑器 无旋treap真好看 B 木棒游戏 暴力神仙题 C 数据生成器 树的直径两端点为Y, Z D 智破连环阵 搜索+二分图匹配优化 第一次写欸 列一下 void dfs (int y,in ...
- 【刷题】LOJ 556 「Antileaf's Round」咱们去烧菜吧
题目描述 你有 \(m\) 种物品,第 \(i\) 种物品的大小为 \(a_i\) ,数量为 \(b_i\)( \(b_i=0\) 表示有无限个). 你还有 \(n\) 个背包,体积分别为 \(1 ...
- Hdoj 1232.畅通工程 题解
Problem Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府"畅通工程"的目标是使全省任何两个城镇间都可以实现交通 ...
- [JSOI2008]Blue Mary的职员分配
由于Blue Mary呕心沥血的管理,Blue Mary的网络公司蒸蒸日上.现在一共拥有了n名职员,可惜没有任何的金钱和声誉.平均每名每天职员都可以给公司带来x单位金钱或者y单位声誉(名利不能双全). ...
- OO第二阶段纪实
$ 0 写在前面 往往是那些令人格外痛苦的经历,会带给人以最快的成长.转眼间,半个学期的时间过去了,时间匆匆,不管之前对这几次充满了怎样的畏惧,在身边朋友们的帮助和努力下,我也渐渐度过了一个个难关.回 ...
- nodejs的某些api~(一)node的流2
可写流writablewritable.write(chunk, [encoding], [callback])chunk {String | Buffer} 要写入的数据encoding {Stri ...
- 纪中2018暑假培训day7提高b组改题记录
由于今天太颓了,所以没有解释 t1: Description 码零鼠是一只很喜欢mx数学的神犇,上面那个不是ta本人的样子.这天,ta在研究一个神奇的数列,这个数列是这样的:a0 = 1an = ai ...
- 【洛谷P3455】ZAP-Queries
题目大意:求 \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[gcd(i,j)=c]\] 题解:学会了狄利克雷卷积. \[\epsilon=\mu \ast 1\] ...
- spring boot下MultipartHttpServletRequest如何提高上传文件大小的默认值
前言: 上传下载功能算是一个非常常见的功能,如果使用MultipartHttpServletRequest来做上传功能. 不配置上传大小的话,默认是2M.在有些场景,这个肯定不能满足条件. 上传代码: ...
- 使用ZXing.Net生成与识别二维码(QR Code)
Google ZXing是目前一个常用的基于Java实现的多种格式的1D/2D条码图像处理库,出于其开源的特性其现在已有多平台版本.比如今天要用到的ZXing.Net就是针对微软.Net平台的版本.使 ...