Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M× N grid (1 ≤ M ≤ 15; 1 ≤ N ≤ 15) of square tiles, each of which is colored black on one side and white on the other side.

As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make.

Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word "IMPOSSIBLE".

Input

Line 1: Two space-separated integers: M and N 
Lines 2.. M+1: Line i+1 describes the colors (left to right) of row i of the grid with N space-separated integers which are 1 for black and 0 for white

Output

Lines 1.. M: Each line contains N space-separated integers, each specifying how many times to flip that particular location.

Sample Input

4 4

1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

Sample Output

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

题意:有一个n*m的矩形 里面有0/1矩阵 现在需要翻转(每次上下左右中翻转)成全0的矩阵 问最少需要多少次

思路:二进制枚举第一行的所有翻转情况 然后保证1~(m-1)行没有1出现 这样我们只要遍历最后一行 只要没有1就是一种方案

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-,,};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int m,n;
int G[][];
int temp[][];
int ans[][];
int get(int x,int y){ //计算当前位置是否为1
int c=G[x][y];
for(int i=;i<;i++){
int xx=x+dir[i][];
int yy=y+dir[i][];
if(xx>=&&xx<=m&&yy>=&&yy<=n)
c+=temp[xx][yy];
}
return c%;
}
int solve(){
for(int i=;i<=m;i++)
for(int j=;j<=n;j++)
if(get(i-,j)) //如果上面一个位置是1 就需要翻转当前位置
temp[i][j]=;
for(int i=;i<=n;i++)
if(get(m,i))
return -inf;
int cnt=;
for(int i=;i<=m;i++)
for(int j=;j<=n;j++)
if(temp[i][j]) cnt++;
return cnt;
}
int main(){
ios::sync_with_stdio(false);
while(cin>>m>>n){
for(int i=;i<=m;i++)
for(int j=;j<=n;j++)
cin>>G[i][j];
int anss=-inf;
for(int i=;i<(<<n);i++){ //二进制枚举第一行的所有情况
memset(temp,,sizeof(temp));
for(int j=;j<=n;j++)
temp[][j]=(i>>(j-))&;
int te=solve();
if(te>anss){
for(int p=;p<=m;p++)
for(int q=;q<=n;q++)
ans[p][q]=temp[p][q];
anss=te;
break;
}
}
if(anss==-inf) cout<<"IMPOSSIBLE"<<endl;
else{
for(int i=;i<=m;i++){
for(int j=;j<=n;j++)
if(j==) cout<<ans[i][j];
else cout<<" "<<ans[i][j];
cout<<endl;
}
}
}
return ;
}

poj 3279 Fliptile(二进制搜索)的更多相关文章

  1. POJ.3279 Fliptile (搜索+二进制枚举+开关问题)

    POJ.3279 Fliptile (搜索+二进制枚举+开关问题) 题意分析 题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置( ...

  2. poj 3279 Fliptile (简单搜索)

    Fliptile Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 16558   Accepted: 6056 Descrip ...

  3. poj 3279 Fliptile(二进制)

    http://poj.org/problem?id=3279 在n*N的矩阵上,0代表白色,1代表黑色,每次选取一个点可以其颜色换过来,即白色变成黑色,黑色变成白色,而且其上下左右的点颜色也要交换,求 ...

  4. POJ 3279 Fliptile[二进制状压DP]

    题目链接[http://poj.org/problem?id=3279] 题意:给出一个大小为M*N(1 ≤ M ≤ 15; 1 ≤ N ≤ 15) 的图,图中每个格子代表一个灯泡,mp[i][j] ...

  5. POJ 3279 Fliptile (二进制枚举)

    <题目链接> <转载于 >>> > 题目大意: 给定一个M*N矩阵,有些是黑色(1表示)否则白色(0表示),每翻转一个(i,j),会使得它和它周围4个格变为另 ...

  6. POJ 3279 Fliptile(翻格子)

    POJ 3279 Fliptile(翻格子) Time Limit: 2000MS    Memory Limit: 65536K Description - 题目描述 Farmer John kno ...

  7. 状态压缩+枚举 POJ 3279 Fliptile

    题目传送门 /* 题意:问最少翻转几次使得棋子都变白,输出翻转的位置 状态压缩+枚举:和之前UVA_11464差不多,枚举第一行,可以从上一行的状态知道当前是否必须翻转 */ #include < ...

  8. POJ 3279(Fliptile)题解

    以防万一,题目原文和链接均附在文末.那么先是题目分析: [一句话题意] 给定长宽的黑白棋棋盘摆满棋子,每次操作可以反转一个位置和其上下左右共五个位置的棋子的颜色,求要使用最少翻转次数将所有棋子反转为黑 ...

  9. POJ 3279 Fliptile (二进制+搜索)

    [题目链接]click here~~ [题目大意]: 农夫约翰知道聪明的牛产奶多. 于是为了提高牛的智商他准备了例如以下游戏. 有一个M×N 的格子,每一个格子能够翻转正反面,它们一面是黑色,还有一面 ...

随机推荐

  1. 理解根目录,classpath, getClass().getResourceAsStream和getClass().getClassLoader().getResourceAsStream的区别

    一: 理解根目录 <value>classpath*:/application.properties</value> <value>classpath:/appli ...

  2. Leetcode SingleNumber I & II & III 136/137/260

    SingleNumber I: 题目链接:https://leetcode-cn.com/problems/single-number/ 题意: 给定一个非空整数数组,除了某个元素只出现一次以外,其余 ...

  3. js 首次进入弹窗

    今天有个需求,首次进入需要弹窗,然后就在网上找了下,虽然看了很多但是说的都不是我想要的,最后终于到了一个合适的. function get_cookie(Name) { var search = Na ...

  4. mycat - 水平分表

    相对于垂直拆分的区别是:垂直拆分是把不同的表拆到不同的数据库中,而水平拆分是把同一个表拆到不同的数据库中.水平拆分不是将表的数据做分类,而是按照某个字段的某种规则来分散到多个库之中,每个表中包含一部分 ...

  5. Redis事物

    redis事物定义: >Redis事务是一个单独的隔离操作:事务中的所有命令都会序列化.按顺序地执行.事务在执行的过程中,不会被其他客户端发送来的命令请求所打断. >Redis事务的主要作 ...

  6. 用 Python 写一个多进程兼容的 TimedRotatingFileHandler

    我前面有篇文章已经详细介绍了一下 Python 的日志模块.Python 提供了非常多的可以运用在各种不同场景的 Log Handler. TimedRotatingFileHandler 是 Pyt ...

  7. 使Python中的turtle模块画图两只小羊

    turtle.circle(radius, extent=None, steps=None) 描述: 以给定半径画圆 参数: radius(半径); 半径为正(负),表示圆心在画笔的左边(右边)画圆 ...

  8. 莫烦sklearn学习自修第七天【交叉验证】

    1. 什么是交叉验证 所谓交叉验证指的是将样本分为两组,一组为训练样本,一组为测试样本:对于哪些数据分为训练样本,哪些数据分为测试样本,进行多次拆分,每次将整个样本进行不同的拆分,对这些不同的拆分每个 ...

  9. SQL 函数NULLIF、NULL、ISNULL、COALESCE、IIF

    NULLIF函数 NULLIF(Expression1,Expression2):给定两个参数Expression1和Expression2,如果两个参数相等,则返回NULL:否则就返回第一个参数. ...

  10. Sharepoint 2016 - Deploy Office Online Server

    Step 1: Install prerequisite software for Office Online Server   To install Office Online Server Ope ...