洛谷P1463 反素数
经典题了,很难想到这TM是搜索......
题意:求[1, n]中约数最多的数中最小的。
解:我们有约数个数定理。
所以考虑通过枚举每个质因数个数来直接计算出约数个数。
然后就可以搜索了。
注意:若p1 < p2 则 a1 >= a2 否则交换a1 a2更优
注意:质数求25以内的即可。因为乘起来已经爆int了。
多说无益,看代码。
#include <cstdio>
#include <algorithm>
typedef long long LL;
const int N = ; int p[N], top, lim[N];
bool vis[N];
LL s[N], n; inline void getp(int b) {
for(int i = ; i <= b; i++) {
if(!vis[i]) {
p[++top] = i;
}
for(int j = ; j <= top && i * p[j] <= b; j++) {
vis[i * p[j]] = ;
if(i % p[j] == ) {
break;
}
}
}
for(int i = ; i <= top; i++) {
LL t = p[i];
while(t <= n) {
t *= p[i];
lim[i]++;
}
}
return;
} LL ans = , cnt = ;
void DFS(LL now, LL s, int t, int last) {
if(now > n) {
return;
}
if(t == top + || last == ) {
if(cnt < s) {
cnt = s;
ans = now;
}
else if(cnt == s) {
ans = std::min(ans, now);
}
return;
} LL tp = now;
for(int i = ; i <= lim[t] && i <= last && tp <= n; i++) {
DFS(tp, s * (i + ), t + , i);
tp *= p[t];
}
return;
} int main() {
scanf("%lld", &n);
getp();
LL t = ;
for(int i = ; i <= lim[]; i++) {
DFS(t, i + , , i);
t *= ;
} printf("%lld", ans);
return ;
}
AC代码
洛谷P1463 反素数的更多相关文章
- 洛谷 [P1436] 反素数
算术基本定理的应用 算术基本定理: 一个正整数 \(N\) 能唯一分解成如下形式 \[N=p_1 ^ {c_1}p_2^{c_2}\cdots P_m ^ {c_m}\] 其中 \(c_i\) 都是正 ...
- 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)
洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式 ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...
- 洛谷 P1463 [SDOI2005]反素数ant
P1463 [SDOI2005]反素数ant 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i< ...
- 【洛谷P1463】反素数
题目大意:给定 \(N < 2e9\),求不超过 N 的最大反素数. 题解: 引理1:不超过 2e9 的数的质因子分解中,最多有 10 个不同的质因子,且各个质因子的指数和不超过30. 引理2: ...
- 洛谷 P1463 [POI2002][HAOI2007]反素数
题目链接 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1, ...
- 洛谷 P1463 [SDOI2005]反素数ant && codevs2912反素数
题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...
- 洛谷 P1463 [HAOI2007]反素数
https://www.luogu.org/problemnew/show/P1463 注意到答案就是要求1-n中约数最多的那个数(约数个数相同的取较小的) 根据约数个数的公式,在约数个数相同的情况下 ...
- 洛谷 P1463、POI2002、HAOI2007 反素数
题意: 求最小的$x\in[1,N]$,使得$x$为$g(x)$最大的数 中最小的一个. 分析: 1.$x$不会有超过$10$个不同质因子.理由:$2 \times 3\times 5...\time ...
- 【洛谷P1835】素数密度
题目描述: 给定区间[L,R](L≤R≤2147483647,R-L≤1000000),请计算区间中素数的个数. 思路: 暴力: 蒟蒻:哦?绿题?这么水?(便打出下面代码) 这绝对是最容易想到的!但, ...
随机推荐
- Docker操作删除所有容器镜像
借鉴博客:https://www.cnblogs.com/yanyouqiang/p/8301856.html https://blog.csdn.net/wy_97/article/details/ ...
- JS中的<a>标签
<a>标签可定义锚.一个锚有两种用法: 通过使用 href 属性,创建一个到另外一个文档的链接 通过使用 name 或 id 属性,创建一个文档内部的书签 如果是在 HTML 5 中,它定 ...
- Spring 基于XML配置
基于XML的配置 对于基于XML的配置,Spring 1.0的配置文件采用DTD格式,Spring2.0以后采用Schema格式,后者让不同类型的配罝拥有了自己的命名空间,使得配置文件更具扩展性.此外 ...
- 转《在浏览器中使用tensorflow.js进行人脸识别的JavaScript API》
作者 | Vincent Mühle 编译 | 姗姗 出品 | 人工智能头条(公众号ID:AI_Thinker) [导读]随着深度学习方法的应用,浏览器调用人脸识别技术已经得到了更广泛的应用与提升.在 ...
- 创建安全客户端Socket
SocketFactory factory = SSLSocketFactory.getDefault(); Socket socket = factory.create("localhos ...
- JQ判断在不同分辨率电脑下使用不同的banner尺寸
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- WEB测试重点--(转载)
1.功能测试: 所实现的功能是否和需求一致: js错误 页面链接错误-空链接.死链接.错误链接 按钮无效 未实现功能 报错提示信息不准确或不友好 数据库访问错误 sql注入 文档上传下载问题 -未实现 ...
- Lodop获取客户端主网卡ip地址是0.0.0.0
LODOP技术手册的GET_SYSTEM_INFO篇,LODOP可以用语句获取到客户端很多信息,NetworkAdapter.1.IPAddress是主网卡IP地址,通常情况下是没问题的,不过如果当前 ...
- windows下ping端口
上图的操作完成以后 进入dos控制台 输入telnet ip地址 端口号 回车 标识已ping通 ping不通是这种提示
- Stack Pointer Tracker
在Intel 64与IA-32架构中,存在一类用于跳转到以及跳出程序段的指令:PUSH.POP.CALL.LEAVE与RET.这些指令可以在没有其余指令的干预下隐式地更新栈寄存器(ESP),维护栈内的 ...