luogu3674 小清新人渣的本愿 (bitset+莫队)
对于加减,用bitset维护当前每个数有没有
对于乘,暴力枚举约数
然后莫队
复杂度$O(m(\sqrt{n}+\frac{c}{64}))$
#include<bits/stdc++.h>
#define pa pair<ll,ll>
#define CLR(a,x) memset(a,x,sizeof(a))
#define MP make_pair
using namespace std;
typedef long long ll;
const int maxn=1e5+; inline char gc(){
return getchar();
static const int maxs=<<;static char buf[maxs],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,maxs,stdin),p1==p2)?EOF:*p1++;
}
inline ll rd(){
ll x=;char c=gc();bool neg=;
while(c<''||c>''){if(c=='-') neg=;c=gc();}
while(c>=''&&c<='') x=(x<<)+(x<<)+c-'',c=gc();
return neg?(~x+):x;
} int N,V,NN,M,v[maxn];
struct Node{
int o,l,r,x,i;
}q[maxn];
bool ans[maxn];
int cnt[maxn];
bitset<> b1,b2; inline bool cmp(Node a,Node b){
return a.l/NN==b.l/NN?((a.l/NN)&?a.r<b.r:a.r>b.r):a.l<b.l;
} inline void solve(int p,int d){
if(!cnt[v[p]]) b1[v[p]]=,b2[V-v[p]]=;
cnt[v[p]]+=d;
if(!cnt[v[p]]) b1[v[p]]=,b2[V-v[p]]=;
} int main(){
//freopen("","r",stdin);
int i,j,k;
N=rd(),NN=sqrt(N),M=rd();
for(i=;i<=N;i++) v[i]=rd(),V=max(V,v[i]);
for(i=;i<=M;i++){
q[i].o=rd(),q[i].l=rd(),q[i].r=rd(),q[i].x=rd(),q[i].i=i;
}sort(q+,q+M+,cmp);
int l=,r=;
for(i=;i<=M;i++){
while(r<q[i].r) solve(++r,);
while(r>q[i].r) solve(r--,-);
while(l<q[i].l) solve(l++,-);
while(l>q[i].l) solve(--l,);
if(q[i].o==){
ans[q[i].i]=(b1&(b1<<q[i].x)).count();
}else if(q[i].o==){
ans[q[i].i]=(b1&(q[i].x>V?(b2<<(q[i].x-V)):(b2>>(V-q[i].x)))).count();
}else{
for(j=;j*j<=q[i].x;j++){
if(q[i].x%j==&&b1[j]&&b1[q[i].x/j]){
ans[q[i].i]=;break;
}
}
}
}
for(i=;i<=M;i++){
if(ans[i]) printf("hana\n");
else printf("bi\n");
}
return ;
}
luogu3674 小清新人渣的本愿 (bitset+莫队)的更多相关文章
- 【洛谷3674】小清新人渣的本愿(莫队,bitset)
[洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...
- luogu P3674 小清新人渣的本愿(莫队+bitset)
这题是莫队维护bitset. 然而我并不会bitset以前讲过认为不考就没学 我真的太菜了. 首先维护一个权值的bitset--s. 操作3比较简单,我们可以\(\sqrt{x}\)枚举约数然后判断就 ...
- 洛谷P3674 小清新人渣的本愿(莫队)
传送门 由乃tql…… 然后抄了一波zcy大佬的题解 我们考虑把询问给离线,用莫队做 然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$ 然后再记录一个$now1$的反串$now2 ...
- [Luogu3674]小清新人渣的本愿
luogu 题意 给你一个序列a,长度为n,有m次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...
- Luogu3674小清新人渣的本愿
https://zybuluo.com/ysner/note/1109536 题面 给你一个序列a,长度为n,有m次操作,每次询问一个区间 是否可以选出两个数它们的差为x 是否可以选出两个数它们的和为 ...
- LuoguP3674 小清新人渣的本愿 && BZOJ4810: [Ynoi2017]由乃的玉米田
题目地址 小清新人渣的本愿 [Ynoi2017]由乃的玉米田 所以这两题也就输出不一样而已 题解 这种lxl的题还是没修改操作的题基本就是莫队 分开考虑每个询问 1.减法 \(a-b=x⇒a=b+x\ ...
- P3674 小清新人渣的本愿
P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...
- 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]
传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...
- 【洛谷 P3674】 小清新人渣的本愿(bitset,莫队)
题目链接 因为每个数都是\(10^5\)以内,考虑直接用\(bitset\)维护. \(a-b=x\),其实就是看是否有\(p\)和\(p+x\)同时存在,直接\(bitset\)移位按位与一下就好了 ...
随机推荐
- selenium处理alert弹出框
import time from selenium import webdriver driver =webdriver.Chrome(r"D:\工具包\chromedriver.exe&q ...
- http/https与websocket的ws/wss的关系以及通过Nginx的配置
http/https与websocket的ws/wss的关系 - 哒哒哒 - CSDN博客 https://blog.csdn.net/Garrettzxd/article/details/81674 ...
- 练习MD5加密jar包编写
简介 参数签名可以保证开发的者的信息被冒用后,信息不会被泄露和受损.原因在于接入者和提供者都会对每一次的接口访问进行签名和验证. 签名sign的方式是目前比较常用的方式. 第1步:接入者把需求访问的接 ...
- JMeter压测分布式部署
监控JMeter压力机的性能
- [转帖]国产闪存颗粒终于熬出头 紫光存储S100固态硬盘评测
国产闪存颗粒终于熬出头 紫光存储S100固态硬盘评测 https://www.cnbeta.com/articles/tech/830875.htm 全国产的 SSD 群联貌似是对岸的 不过不管怎么说 ...
- Day2 列表,元组,字典,集合
一,列表 定义:[]内以逗号分隔,按照索引,存放各种数据类型,每个位置代表一个元素. list=['alex', 'jack', 'chen', 'shaoye'] #创建一个列表. 特性: 1.可存 ...
- 你不知道的JavaScript——第一章:作用域是什么?
编译原理 JavaScript事实上是一门编译语言,但与传统的编译语言不同,它不是提前编译的,编译结果也不能在分布式系统中进行移植. 任何JavaScript代码片段在执行前都要进行编译(通常就在执行 ...
- Pyspark spark-submit 集群提交任务以及引入虚拟环境依赖包攻略
网上提交 scala spark 任务的攻略非常多,官方文档其实也非常详细仔细的介绍了 spark-submit 的用法.但是对于 python 的提交提及得非常少,能查阅到的资料非常少导致是有非常多 ...
- mktemp -t -d用法
mktemp命令用于建立暂存文件或者文件夹,帮助文档如下: Usage: mktemp [OPTION]... [TEMPLATE] Create a temporary file or direct ...
- DAY07、字符编码和文件操作
一.字符编码 1.什么是字符编码? 人类能识别的是字符等高级标识符,电脑只能识别0,1组成的标识符,要完成人与机器之间的信息交流, 一定需要一个媒介,进行两种标识符的转化(两 ...